Full Paper View Go Back
M. Aravinthraj1 , F. Liakath Ali Khan2 , J. Udayaseelan3 , R. Santhosh Kumar4
Section:Research Paper, Product Type: Isroset-Journal
Vol.7 ,
Issue.3 , pp.71-82, Jun-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrpas/v7i3.7182
Online published on Jun 30, 2019
Copyright © M. Aravinthraj, F. Liakath Ali Khan, J. Udayaseelan , R. Santhosh Kumar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: M. Aravinthraj, F. Liakath Ali Khan, J. Udayaseelan , R. Santhosh Kumar, “Molecular Interaction Studies between Methylamine and 2-Nitrobenzoic Acid by Quantum Chemical Calculation (FT-IR, FMO, GCRD, MEP, NLO) and Dielectric Relaxation Analysis,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.7, Issue.3, pp.71-82, 2019.
MLA Style Citation: M. Aravinthraj, F. Liakath Ali Khan, J. Udayaseelan , R. Santhosh Kumar "Molecular Interaction Studies between Methylamine and 2-Nitrobenzoic Acid by Quantum Chemical Calculation (FT-IR, FMO, GCRD, MEP, NLO) and Dielectric Relaxation Analysis." International Journal of Scientific Research in Physics and Applied Sciences 7.3 (2019): 71-82.
APA Style Citation: M. Aravinthraj, F. Liakath Ali Khan, J. Udayaseelan , R. Santhosh Kumar, (2019). Molecular Interaction Studies between Methylamine and 2-Nitrobenzoic Acid by Quantum Chemical Calculation (FT-IR, FMO, GCRD, MEP, NLO) and Dielectric Relaxation Analysis. International Journal of Scientific Research in Physics and Applied Sciences, 7(3), 71-82.
BibTex Style Citation:
@article{Aravinthraj_2019,
author = {M. Aravinthraj, F. Liakath Ali Khan, J. Udayaseelan , R. Santhosh Kumar},
title = {Molecular Interaction Studies between Methylamine and 2-Nitrobenzoic Acid by Quantum Chemical Calculation (FT-IR, FMO, GCRD, MEP, NLO) and Dielectric Relaxation Analysis},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {6 2019},
volume = {7},
Issue = {3},
month = {6},
year = {2019},
issn = {2347-2693},
pages = {71-82},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1347},
doi = {https://doi.org/10.26438/ijcse/v7i3.7182}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i3.7182}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1347
TI - Molecular Interaction Studies between Methylamine and 2-Nitrobenzoic Acid by Quantum Chemical Calculation (FT-IR, FMO, GCRD, MEP, NLO) and Dielectric Relaxation Analysis
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - M. Aravinthraj, F. Liakath Ali Khan, J. Udayaseelan , R. Santhosh Kumar
PY - 2019
DA - 2019/06/30
PB - IJCSE, Indore, INDIA
SP - 71-82
IS - 3
VL - 7
SN - 2347-2693
ER -
Abstract :
The FTIR spectrum of methylamine with 2-nitrobenzoic acid (ma2nba) in liquid phase is recorded and the comprehensive vibrational assignments and PED is attained by the vibrational energy distribution analysis. Ma2cba was theoretically optimized and FMO, nonlinear optical, molecular surfaces and comparison between Mulliken and natural charges were also performed by DFT method with B3LYP/6-311++G(d,p) basis set. The charge transfers in the molecule confirmed by the HOMO and lowest LUMO. Dielectric relaxation parameters like dielectric constant, dielectric loss, average and overall relaxation time, molar free energy of activation for viscous flow and the molar free energy of dielectric relaxation of ma2nba have been calculated over five different molar ratios (1:3, 1:2, 1:1, 2:1, 3:1) at room temperature by Higasi’s method. These parameters are inferred in terms of molecular association and dipolar orientation. Moreover, the relaxation time found maximum at 1:1 molar ratio.
Key-Words / Index Term :
Quantum Chemical Calculations, B3LYP, HOMO, LUMO, DOS, NBO, NLO, Dielectric Relaxation
References :
[1]. A. Courtney, P. Flatt, Chapter 5: Covalent Bonds and Introduction to Organic Molecules, Western Oregon University.
[2]. John T. Plati, Wilhelm Wenner, The Reaction of acetophenone with formaldehyde and Methylamine Hydrochloride. J. Org. Chem., 14(4), pp 543-549, 1949.
[3]. L. L. Simpson, Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins, JPET, 225 (3), pp 546-552, 1983.
[4]. Y. Hasegawa., et al, A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU–7. FEMS Microbiol Lett., 190(2), pp 185-190, 2000.
[5]. G. Smith., et al. Molecular adducts of 2,6-diamino pyridine with nitro-substituted aromatic carboxylic acids and the crystal structure of the 1:1 adduct of 2,6-diaminopyridine with 2-nitrobenzoic acid, Aust. J. Chem., 52(1), pp 71-74, 1999.
[6]. M. Peter, W. Gill, G.Benny, Johnson, John A. Pople, Michael J. Frisch, The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets, Chemical Physics Letters, 197(4–5), pp 499-505, 1992.
[7]. C. Lee, W. Yang, R. G. Parr, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, pp 785–789, 1988.
[8]. M. Karabacak, D. Karagöz, M. Kurt, Experimental (FT–IR and FT–Raman spectra) and theoretical (ab initio HF, DFT) study of 2–chloro–5–methylaniline, J. Mol. Struct. 892, pp 25–31, 2008.
[9]. M. Karabacak, M. Kurt, A. Atac, Experimental and theoretical FT‐IR and FT‐Raman spectroscopic analysis of N1‐methyl‐2‐chloroaniline, J. Phys. Org. Chem. 22, pp 321–330, 2009.
[10]. Gaussian ® 09w, Version 7.0, copyright © 1995-09, Gaussian, Inc.
[11]. N. Karthikeyan, J. Joseph Prince, S. Ramalingam and S.Periandy, Spectroscopic [FT-IR and FT-Raman] and theoretical [UV–Visible and NMR] analysis on α-Methylstyrene by DFT calculations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 143, pp 107-119, 2015.
[12]. S.Xavier and S.Periandy, Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation on 1-phenyl-2-nitropropene by quantum computational calculations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 149, pp 216-230, 2015.
[13]. Mehmet Karabacak, Etem Kose, Ahmet Atac, Abdullah M. Asiri and Mustafa Kurt,
Monomeric and dimeric structures analysis and spectroscopic characterization of 3,5–difluorophenylboronic acid with experimental (FT–IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations, Journal of Molecular Structure 1058. pp 79-96, 2014.
[14]. Y. Higasi, K. Koga and M. Nakamura, “Dielectric Relaxation and Molecular Structure - V. Application of the Single Frequency Method to Systems with two Debye Dispersions,” Bull. Chem. Soc. Jap. 44, pp 988-992, 1971.
[15]. S. Glasstone, K. J. Laidler, H.Eyring, The Theory of Rate Process: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, McGraw Hill, New York, pp 19, 1941.
[16]. H. Eddine Ahmed, S. Kamoun, Crystal structure, vibrational spectra, optical and DFT studies of bis (3–azaniumylpropyl) azanium pentachloro antimonate (III) chloride monohydrate (C6H20N3) SbCl5•Cl•H2O, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 184, pp 38-46, 2017.
[17]. S. Sumathi, K. Viswanathan, S. Ramesh, FT-IR, FT-Raman and SERS Spectral Studies, HOMO–LUMO Analyses, Mulliken Population Analysis and Density Functional Theoretical Analysis of 1–Chloro 4–Fluorobenzene, IOSR Journal of Applied Physics, 8(1), Ver. II, pp 16-25, 2016.
[18]. M.V.S. Prasad, Kadali Chaitanya, N. Udaya Sri V.Veeraiah, Vibrational and electronic absorption spectral studies of 5–amino –1– (4–bromophenyl) –3–phenyl–1–H-pyrazole, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, pp 379–389, 2012.
[19]. S. Muthu, J. Uma Maheswari, Tom Sundius, Quantum mechanical, spectroscopic studies (FT–IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3– ([2–(diaminomethyleneamino) thiazol –4-yl] methylthio) – N′ – sulfamoyl propanimid amide Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 108, pp 307-318, 2013.
[20]. Tuncay Karakurt Muharrem Dinçer Ahmet Çetin Memet Şekerci, Molecular structure and vibrational bands and chemical shift assignments of 4–allyl–5– (2 – hydroxyl phenyl) – 2,4 – dihydro – 3H – 1,2,4-triazole-3-thione by DFT and ab initio HF calculations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77(1), pp 189-198, 2010.
[21]. S. Muthu, J. Uma Maheswari, Tom Sundius, Molecular structural, non–linear optical, second order perturbation and Fukui studies of Indole-3-Aldehyde using density functional calculations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 106, pp 299–309, 2013.
[22]. Pratim Kumar Chattaraj, Buddhadev Maiti, and Utpal Sarkar, Philicity, A Unified Treatment of Chemical Reactivity and Selectivity, J. Phys. Chem. A, 107 (25), pp 4973–4975, 2003.
[23]. V.P. Gupta, Chapter 6 - Electron Density Analysis and Electrostatic Potential, Principles and Applications of Quantum Chemistry, pp 195-214, 2016.
[24]. E. Scrocco, J. Tomasi (n.d.). The electrostatic molecular potential as a tool for the interpretation of molecular properties. New Concepts II, pp 95–170. doi:10.1007/3-540-06399-4_6 .
[25]. Sihem Medjahed, Salah Belaidi, Salim Djekhaba, Noureddine Tchouar and Aicha Kerassa, Computational Study of Molecular Electrostatic Potential, Drug Likeness Screening and Structure-Activity/Property Relationships of Thiazolidine–2,4–Dione Derivatives, J. Bionanosci. 10(2), pp 118–126, 2016.
[26]. T.Abbaz, A.Bendjeddou, D.Villemin, Application of Reactivity Descriptors to the Benzenesulfonamide Derivatives, Journal of Scientific and Engineering Research, 6(2): pp 57-68, 2019.
[27]. A.Prabakaran, S. Muthu, Normal coordinate analysis and vibrational spectroscopy (FT–IR and FT–Raman) studies of (2S) –2-amino–3– (3,4–dihydroxyphenyl) –2-methyl propanoic acid using ab initio HF and DFT method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99(15), pp 90-96, 2012.
[28]. K.Gopinath, C.Karthikeyan, A.S.Haja Hameed, K.Arunkumar and A.Arumugam, Phytochemical Synthesis and Crystallization of Sucrose from the Extract of Gloriosa superba. Research Journal of Phytochemistry, 9: pp 144-160, 2015.
[29]. G.Subhapriya, S.Kalyanaraman, N.Surumbarkuzhali, S.Vijayalakshmi, V.Krishnakumar, S.Gandhimathi, Intermolecular hydrogen bonding, structural and vibrational assignments of 2, 3, 4, 5-tetrafluoro benzoic acid using density functional theory, Journal of Molecular Structure, 1128, pp 534-543, 2017.
[30]. Himri Safia, Lafifi Ismahan, Guendouzi Abdelkrim, Cheriet Mouna, Nouar Leila, MadiFatiha, Density functional theories study of the interactions between host β–Cyclodextrin and guest 8-Anilinonaphthalene–1-sulfonate: Molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses Journal of Molecular Liquids, 280, pp 218-229, 2019.
[31]. S.Suresh and D.Arivuoli, Synthesis, Optical and Dielectric Properties of Tris-Glycine Zinc Chloride (TGZC) Single Crystals, Journal of Minerals & Materials Characterization & Engineering, 10(6), pp 517-526, 2011.
[32]. Y.S. Priya, K.R.Rao, P.V.Chalapathi and A.Veeraiah, Vibrational and Electronic Spectra of 2-Phenyl-2-Imidazoline: A Combined Experimental and Theoretical Study, Journal of Modern Physics, 9, pp 753-774, 2018.
[33]. M.Ramalingam, N.Sundaraganesan, H.Saleem, J.Swaminathan, Experimental (FTIR and FT-Raman) and ab initio and DFT study of vibrational frequencies of 5-amino-2-nitrobenzoic acid, Spectrochimica Acta Part A, 71, pp 23–30, 2008.
[34]. V. Arjunan, M. Kalaivani, R. Ravindran, S. Mohan. S. Structural, vibrational and quantum chemical investigations on 5–chloro–2–hydroxy benzamide and 5–chloro–2–hydroxybenzoic acid, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), pp 1886-1895, 2011.
[35]. Kyle Gipson, Kathryn Stevens, Phil Brown, and John Ballato, Infrared Spectroscopic Characterization of Photoluminescent Polymer Nanocomposites, Journal of Spectroscopy, Article ID 489162, pp 1-9, 2015.
[36]. M. E. Yazdanshenas, M. Shateri-Khalilabad, One-step synthesis of superhydrophobic coating on cotton fabric by ultrasound irradiation, Ind. Eng. Chem. Res. 52, pp 12846–12854, 2013.
[37]. C. H. Xue, S. T. Jia, J. Zhang, L. Q. Tian, Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization, Thin Solid Films 517, pp 4593–4598, 2019.
[38]. M. P. Gashti, F. Alimohammadi, A. Shamei, Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nano composite coating, Surf. Coat. Technol. 206, pp 3208–3215, 2012.
[39]. Q. Gao, Q. Zhu, Y. Guo, Formation of highly hydrophobic surfaces on cotton and polyester fabrics using silica sol nanoparticles and nonfluorinated alkylsilane, Ind. Eng. Chem. Res. 48, pp 9797–9803, 2009.
[40]. A. L. Mohamed, M. A. El-Sheikh, A. I. Waly, Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites, Carbohydr. Polym. 102, pp 727–737, 2014.
[41]. S. Glasstone, K. J. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941), Chapter 9.
[42]. K. Chitoku and K. Higasi, This Bulletin, 36, 1064 (1963) ; K. Higasi, "Dipole Molecules and Chemistry," Hokkaido University, Sapporo (1965), Chapter 1; Krishnaji and A. Mansingh, J. Chem. Phys., 42, pp 2503, 1965.
[43]. S. M. Khameshara, M. S. Kavadia, M. S. Lodha, D. C. Mathur and V. K. Vaidya, Dielectric relaxation time and dipole moment of isometric butanols in benzene solutions, J.Mol. Liq. 26(2), pp 77-84, 1983.
[44]. Y. Dimitrova, Structure and vibrational spectrum of the hydrogen-bonded system between 4-tert-butylphenol and N-bases: Ab initio and DFT studies, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 69 (2), pp 517–523, 2008.
[45]. G. A. Jaffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997.
[46]. G. B. Mathapati, P. K. Ingalagondi, Omnath Patil, B. Shivaleela, Shivaraj Gounalli and S. M. Hanagodimath, Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule by Solvatochromic shift method and Gaussian software, International Journal of Scientific Research in Physics and Applied Sciences, Vol.7, Issue.2, pp.38-43, 2019.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.