Full Paper View Go Back

Spectrophotometric Investigation of the Complexation Mechanism of 3–(Trifluoromethyl) Acetophenone

S. Saravanan1 , G. Kanagan2 , G. Satheeshkumar3 , S.Pari 4 , R. Sambasivam5

Section:Research Paper, Product Type: Journal-Paper
Vol.7 , Issue.3 , pp.109-118, Jun-2019


CrossRef-DOI:   https://doi.org/10.26438/ijsrpas/v7i3.109118


Online published on Jun 30, 2019


Copyright Β© S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam, β€œSpectrophotometric Investigation of the Complexation Mechanism of 3–(Trifluoromethyl) Acetophenone,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.7, Issue.3, pp.109-118, 2019.

MLA Style Citation: S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam "Spectrophotometric Investigation of the Complexation Mechanism of 3–(Trifluoromethyl) Acetophenone." International Journal of Scientific Research in Physics and Applied Sciences 7.3 (2019): 109-118.

APA Style Citation: S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam, (2019). Spectrophotometric Investigation of the Complexation Mechanism of 3–(Trifluoromethyl) Acetophenone. International Journal of Scientific Research in Physics and Applied Sciences, 7(3), 109-118.

BibTex Style Citation:
@article{Saravanan_2019,
author = {S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam},
title = {Spectrophotometric Investigation of the Complexation Mechanism of 3–(Trifluoromethyl) Acetophenone},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {6 2019},
volume = {7},
Issue = {3},
month = {6},
year = {2019},
issn = {2347-2693},
pages = {109-118},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1351},
doi = {https://doi.org/10.26438/ijcse/v7i3.109118}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i3.109118}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1351
TI - Spectrophotometric Investigation of the Complexation Mechanism of 3–(Trifluoromethyl) Acetophenone
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam
PY - 2019
DA - 2019/06/30
PB - IJCSE, Indore, INDIA
SP - 109-118
IS - 3
VL - 7
SN - 2347-2693
ER -

380 Views    202 Downloads    91 Downloads
  
  

Abstract :
The experimental and theoretical study on the structures and vibrations of 3-TRIFLUOROMETHYL ACETOPHENONE (abbreviated as 3TFMAP) are presented. The FT-IR and FT-Raman spectra of the title compound have been recorded in the region 4000−400 cm-1 and 3500−100 cm-1 respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP) method with 6-31+G (d) basis set. The most stable conformer of 3TFMAP is identified from the computational results. HOMO and LUMO energies were determined by time-dependent TD-DFT approach. Molecular electrostatic potential map also analysis by this present compound, respectively.

Key-Words / Index Term :
TRIFLUOROMETHYL ACETOPHENONE, FT-IR, FT-Raman, HOMO and LUMO, Molecular electrostatic potential (MEP)

References :
[1] R.N. Griffin, Photochem. Photobiol. 7, 1968, 159−173.
[2] L. Lindqvist, J. Phys. Chem. 76, 1972, 821−822.
[3] X. Zhang, L. Shan, H. Huang, X. Yang, X. Liang, A. Xing, H. Huang, X. Liu, J. Su,
W. Zhang, J. Pharm. Biomed. Anal. 49, 2009, 715–725.
[4] Z.B. Liu, Y.S. Sun, J.H. Wang, H.F. Zhu, H.Y. Zhou, J.N. Hu, J. Wang, Sep. Purif.
Technol. 64, 2008, 247–252.
[5] Y.R. Prasad, A.S. Rao, R. Rambabu, Asian J. Chem. 21, 2009, 907–914.
[6] S. Cacchi, G. Fabrizi, F. Gavazza, A. Goggiamani, Org. Lett. 5, 2003, 289–291.
[7] P.M. Sivakumar, G. Sheshayan, M. Doble, Chem. Biol. Drug Des. 72, 2008, 303–313.
[8] H.Z. Wei, L.C. Wing, H.L. Yuan, S.S. Yau, C.L. Yong, H.Y. Chi, Heterocycles, 45,
1997, 71–75.
[9] M.J. Climent, A. Corma, S. Iborra, A. Velty, J. Catal. 221, 2004, 474–482.
[10] H.G. Korth, M.I. de Heer, P. Mulder, J. Phys. Chem. 106, 2002, 8779–8789.
[11] A. Asensio, N. Kobko, J.J. Dannenberg, J. Phys. Chem. A 107, 2003, 6441–6443.
[12] M.J. Frisch, et al., GAUSSIAN 09, Revision A. 9, Gaussian, INC, Pittsburgh, 2009.
[13] H.B. Schlegel, J. Comput. Chem. 3, 1982, 214−218.
[14] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold. NBO Version 3.1.TCI.
University of Wisconsin, Madison, 1998.
[15] T. Sundius, J. Mol. Struct. 218, 1990, 321−326; MOLVIB: A Program for Harmonic
force field calculations. QCPE Program No. 807, 2002.
[16] P.L. Polavarapu, J. Phys. Chem. 94, 1990, 8106−8112.
[17] G. Keresztury, BT Raman spectroscopy. Theory, in: J.M. Chalmers, P.R. Griffiths
(Eds.), Handbook of Vibrational Spectroscopy, Vol. 1, John Wiley & Sons Ltd.,
2002, 71−87.
[18] Uwe Monkowius, Manfred Zabel, Acta Cryst Sec. E 64, 2008, m196.
[19] Min Zhang, Xian-You Yuan, Seik Weng Ng, Acta Cryst. Sec. E 66, 2010, o2917.
[20] E.G. Lewars, computational chemistry, Spriger Science, Business media. B.V., 2011,
doi: 10:1007/978−90-481-3862-3-2.
[21] N.P.G. Roges, A Guide to the Complete Interpretation of Infrared Spectra of Organic
Structures, Wiley, New York, 1994.
[22] V. Krishnakumar, N. Surumbakuzhali, S. Muthunatesan, Spectrochim. Acta A 71,
2009, 1810–1813.
[23] G. Socrates, Infrared Characteristic Group Frequencies, John Wiley &
Sons,Interscience Publication, New York, Brisbane, Toronto 1980
[24] G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene
Derivatives, vol. 1/2, Academic Kiado, Budapset, 1973.
[25] S. Gunasekaran, R. ArunBalaji, S. Seshadri, S. Muthu, Indian J. Pure Appl. Phys. 46,
2008, 162–168.
[26] S.Saravanan, V. Balachandran, K. Viswanathan, Spectrochim. Acta part A 121,
2014, 685−697.
[27] V. Balachandran, K. Parimala, J. Mol. Struct. 1007, 2012, 136−145.
[28] V. Krishnakumar, V. Balachandran, Spectrochim. Acta Part A 63, 2006, 464−476.
[29] D. Sajan, J. Binoy, B. Pradeep, K. Venkatakrishnan, V. Kartha, I. Joe, V.Jayakumar,
Spectrochim. Acta Part A 60, 2004, 173–180.
[30] S. Muthu, N.R. Sheela, S. Sampathkrishnan, Mol. Simul. 37, 2011, 1276−1288.
[31] K.B. Wiberg, A. Sharke, Spectrochim. Acta A 29, 1973, 583−594.
[32] M. Silverstein, G. Clayton Bassler, C. Morril, Spectroscopic identification of
Organic Compounds, John Wiley, New York, 1981.
[33] N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman
Spectroscopy, Academic Press, New York, 1990.
[34] N. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic
Structures, Wiley, New York, 1994.
[35] W.B. Tzeng, K. Narayanan, J.L. Lin, C.C. Tung, Spectrochim. Acta Part A 55, 1999,
153−162.
[36] A.M. Huralikoppi, Investigation on the Spectra of Some Substituted Aromatic
Molecules; Ph.D thesis, Department of Physics, Karnataka University Dharrwad,
1995.
[37] B. Smith, Infrared Spectral Interpretation, A Systematic Approach, CRC Press,
Washington, DC, 1999.
[38] A.J. Abkowicz-Bienko, Z. Latajka, D.C. Bienko, D. Michalska, Chem. Phys. 250,
1999, 123−129.
[39] R.S. Mulliken, J.Chem. Phys. 2, 1934, 782−793.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us atΒ  support@isroset.org or view contact page for more details.

Go to Navigation