Full Paper View Go Back
Spectrophotometric Investigation of the Complexation Mechanism of 3β(Trifluoromethyl) Acetophenone
S. Saravanan1 , G. Kanagan2 , G. Satheeshkumar3 , S.Pari 4 , R. Sambasivam5
Section:Research Paper, Product Type: Journal-Paper
Vol.7 ,
Issue.3 , pp.109-118, Jun-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrpas/v7i3.109118
Online published on Jun 30, 2019
Copyright Β© S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam, βSpectrophotometric Investigation of the Complexation Mechanism of 3β(Trifluoromethyl) Acetophenone,β International Journal of Scientific Research in Physics and Applied Sciences, Vol.7, Issue.3, pp.109-118, 2019.
MLA Style Citation: S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam "Spectrophotometric Investigation of the Complexation Mechanism of 3β(Trifluoromethyl) Acetophenone." International Journal of Scientific Research in Physics and Applied Sciences 7.3 (2019): 109-118.
APA Style Citation: S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam, (2019). Spectrophotometric Investigation of the Complexation Mechanism of 3β(Trifluoromethyl) Acetophenone. International Journal of Scientific Research in Physics and Applied Sciences, 7(3), 109-118.
BibTex Style Citation:
@article{Saravanan_2019,
author = {S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam},
title = {Spectrophotometric Investigation of the Complexation Mechanism of 3β(Trifluoromethyl) Acetophenone},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {6 2019},
volume = {7},
Issue = {3},
month = {6},
year = {2019},
issn = {2347-2693},
pages = {109-118},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1351},
doi = {https://doi.org/10.26438/ijcse/v7i3.109118}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i3.109118}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1351
TI - Spectrophotometric Investigation of the Complexation Mechanism of 3β(Trifluoromethyl) Acetophenone
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - S. Saravanan, G. Kanagan, G. Satheeshkumar ,S.Pari, R. Sambasivam
PY - 2019
DA - 2019/06/30
PB - IJCSE, Indore, INDIA
SP - 109-118
IS - 3
VL - 7
SN - 2347-2693
ER -
Abstract :
The experimental and theoretical study on the structures and vibrations of 3-TRIFLUOROMETHYL ACETOPHENONE (abbreviated as 3TFMAP) are presented. The FT-IR and FT-Raman spectra of the title compound have been recorded in the region 4000−400 cm-1 and 3500−100 cm-1 respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP) method with 6-31+G (d) basis set. The most stable conformer of 3TFMAP is identified from the computational results. HOMO and LUMO energies were determined by time-dependent TD-DFT approach. Molecular electrostatic potential map also analysis by this present compound, respectively.
Key-Words / Index Term :
TRIFLUOROMETHYL ACETOPHENONE, FT-IR, FT-Raman, HOMO and LUMO, Molecular electrostatic potential (MEP)
References :
[1] R.N. Griffin, Photochem. Photobiol. 7, 1968, 159−173.
[2] L. Lindqvist, J. Phys. Chem. 76, 1972, 821−822.
[3] X. Zhang, L. Shan, H. Huang, X. Yang, X. Liang, A. Xing, H. Huang, X. Liu, J. Su,
W. Zhang, J. Pharm. Biomed. Anal. 49, 2009, 715β725.
[4] Z.B. Liu, Y.S. Sun, J.H. Wang, H.F. Zhu, H.Y. Zhou, J.N. Hu, J. Wang, Sep. Purif.
Technol. 64, 2008, 247β252.
[5] Y.R. Prasad, A.S. Rao, R. Rambabu, Asian J. Chem. 21, 2009, 907β914.
[6] S. Cacchi, G. Fabrizi, F. Gavazza, A. Goggiamani, Org. Lett. 5, 2003, 289β291.
[7] P.M. Sivakumar, G. Sheshayan, M. Doble, Chem. Biol. Drug Des. 72, 2008, 303β313.
[8] H.Z. Wei, L.C. Wing, H.L. Yuan, S.S. Yau, C.L. Yong, H.Y. Chi, Heterocycles, 45,
1997, 71β75.
[9] M.J. Climent, A. Corma, S. Iborra, A. Velty, J. Catal. 221, 2004, 474β482.
[10] H.G. Korth, M.I. de Heer, P. Mulder, J. Phys. Chem. 106, 2002, 8779β8789.
[11] A. Asensio, N. Kobko, J.J. Dannenberg, J. Phys. Chem. A 107, 2003, 6441β6443.
[12] M.J. Frisch, et al., GAUSSIAN 09, Revision A. 9, Gaussian, INC, Pittsburgh, 2009.
[13] H.B. Schlegel, J. Comput. Chem. 3, 1982, 214−218.
[14] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold. NBO Version 3.1.TCI.
University of Wisconsin, Madison, 1998.
[15] T. Sundius, J. Mol. Struct. 218, 1990, 321−326; MOLVIB: A Program for Harmonic
force field calculations. QCPE Program No. 807, 2002.
[16] P.L. Polavarapu, J. Phys. Chem. 94, 1990, 8106−8112.
[17] G. Keresztury, BT Raman spectroscopy. Theory, in: J.M. Chalmers, P.R. Griffiths
(Eds.), Handbook of Vibrational Spectroscopy, Vol. 1, John Wiley & Sons Ltd.,
2002, 71−87.
[18] Uwe Monkowius, Manfred Zabel, Acta Cryst Sec. E 64, 2008, m196.
[19] Min Zhang, Xian-You Yuan, Seik Weng Ng, Acta Cryst. Sec. E 66, 2010, o2917.
[20] E.G. Lewars, computational chemistry, Spriger Science, Business media. B.V., 2011,
doi: 10:1007/978−90-481-3862-3-2.
[21] N.P.G. Roges, A Guide to the Complete Interpretation of Infrared Spectra of Organic
Structures, Wiley, New York, 1994.
[22] V. Krishnakumar, N. Surumbakuzhali, S. Muthunatesan, Spectrochim. Acta A 71,
2009, 1810β1813.
[23] G. Socrates, Infrared Characteristic Group Frequencies, John Wiley &
Sons,Interscience Publication, New York, Brisbane, Toronto 1980
[24] G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene
Derivatives, vol. 1/2, Academic Kiado, Budapset, 1973.
[25] S. Gunasekaran, R. ArunBalaji, S. Seshadri, S. Muthu, Indian J. Pure Appl. Phys. 46,
2008, 162β168.
[26] S.Saravanan, V. Balachandran, K. Viswanathan, Spectrochim. Acta part A 121,
2014, 685−697.
[27] V. Balachandran, K. Parimala, J. Mol. Struct. 1007, 2012, 136−145.
[28] V. Krishnakumar, V. Balachandran, Spectrochim. Acta Part A 63, 2006, 464−476.
[29] D. Sajan, J. Binoy, B. Pradeep, K. Venkatakrishnan, V. Kartha, I. Joe, V.Jayakumar,
Spectrochim. Acta Part A 60, 2004, 173β180.
[30] S. Muthu, N.R. Sheela, S. Sampathkrishnan, Mol. Simul. 37, 2011, 1276−1288.
[31] K.B. Wiberg, A. Sharke, Spectrochim. Acta A 29, 1973, 583−594.
[32] M. Silverstein, G. Clayton Bassler, C. Morril, Spectroscopic identification of
Organic Compounds, John Wiley, New York, 1981.
[33] N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman
Spectroscopy, Academic Press, New York, 1990.
[34] N. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic
Structures, Wiley, New York, 1994.
[35] W.B. Tzeng, K. Narayanan, J.L. Lin, C.C. Tung, Spectrochim. Acta Part A 55, 1999,
153−162.
[36] A.M. Huralikoppi, Investigation on the Spectra of Some Substituted Aromatic
Molecules; Ph.D thesis, Department of Physics, Karnataka University Dharrwad,
1995.
[37] B. Smith, Infrared Spectral Interpretation, A Systematic Approach, CRC Press,
Washington, DC, 1999.
[38] A.J. Abkowicz-Bienko, Z. Latajka, D.C. Bienko, D. Michalska, Chem. Phys. 250,
1999, 123−129.
[39] R.S. Mulliken, J.Chem. Phys. 2, 1934, 782−793.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us atΒ support@isroset.org or view contact page for more details.