Full Paper View Go Back

Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14

R. Kripal1 , L. C. Shukla2

Section:Research Paper, Product Type: Journal-Paper
Vol.9 , Issue.6 , pp.44-48, Dec-2021


Online published on Dec 31, 2021


Copyright © R. Kripal, L. C. Shukla . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: R. Kripal, L. C. Shukla, “Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.9, Issue.6, pp.44-48, 2021.

MLA Style Citation: R. Kripal, L. C. Shukla "Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14." International Journal of Scientific Research in Physics and Applied Sciences 9.6 (2021): 44-48.

APA Style Citation: R. Kripal, L. C. Shukla, (2021). Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14. International Journal of Scientific Research in Physics and Applied Sciences, 9(6), 44-48.

BibTex Style Citation:
@article{Kripal_2021,
author = {R. Kripal, L. C. Shukla},
title = {Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {12 2021},
volume = {9},
Issue = {6},
month = {12},
year = {2021},
issn = {2347-2693},
pages = {44-48},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2625},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2625
TI - Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - R. Kripal, L. C. Shukla
PY - 2021
DA - 2021/12/31
PB - IJCSE, Indore, INDIA
SP - 44-48
IS - 6
VL - 9
SN - 2347-2693
ER -

179 Views    282 Downloads    60 Downloads
  
  

Abstract :
Using superposition model (SPM) the zero field splitting (ZFS) parameters (ZFSPs) and crystal field parameters (CFPs) are found. Two substitutional sites at Ga3+ and one structural vacancy site, for Cr3+ ion in Sr3Ga2Ge4O14 (SGG) crystal together with distortion model are employed. The calculated ZFSPs agree well with the experimental values. The optical energy bands for Cr3+ in SGG are obtained using CFPs determined from SPM. The results show that Cr3+ ions introduce SGG lattice at Ga3+ sites.

Key-Words / Index Term :
Superposition model; Crystal field and zero-field splitting Hamiltonians; Optical spectroscopy; Cr3+ ions in Sr3Ga2Ge4O14 (SGG).

References :
[1] C. Rudowicz, P. Gnutek, M. Aç?kgöz, “Superposition model in electron magnetic resonance spectroscopy – a primer for experimentalists with illustrative applications and literature database”, Appl. Spectroscopy Rev. Vol. 54, pp.673-718, 2019.
[2] A. Abragam, B. Bleaney, “Electron Paramagnetic Resonance of Transition Ion”, Clarendon Press, Oxford, UK, 1970; Dover, New York, USA, 1986.
[3] C.P. Jr. Poole, H.A. Farach, “Theory of Magnetic Resonance”, Wiley, New York, USA, 1987.
[4] J. R. Pilbrow, “Transition-Ion Electron Paramagnetic Resonance”, Clarendon Press, Oxford, UK, 1990.
[5] J. M. Spaeth, J. R. Niklas, R. H. Bartram, “Structural Analysis of Point Defects in Solids”, Springer Series in Solid-State Sciences Vol. 43, Springer, Berlin, Germany,1992.
[6] J. A. Weil, J. R. Bolton, “Electron Paramagnetic Resonance, Elemental Theory and Practical Applications”, Wiley, New York, USA, 2007.
[7] B. G. Wybourne, “Spectroscopic Properties of Rare Earth”, Wiley, New York, USA, 1965.
[8] C.A. Morrison, “Crystal Field for Transition-Metal Ions in Laser Host Materials”, Springer, Berlin, Germany, 1992.
[9] B.N. Figgis, A. Hitchman, “Ligand Field Theory and its Applications”, Wiley-VCH, New York, USA, 2000.
[10] J. Mulak, Z. Gajek, “The Effective Crystal Field Potential”, Elsevier, Amsterdam, Holland, 2000.
[11] C. Rudowicz, M. Karbowiak,” Disentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin) Hamiltonians”, Coord. Chem. Rev., Vol. 287, pp.28-63, 2015.
[12] E. L. Belokoneva, M. A. Siminov, A. V. Butashin, B. V. Mill, N. V. Belov, “Crystal structure of Ca-gallogermanate, Ca3Ga2Ge4O14=Ca3Ge[(Ga2Ge)Ge2O14] and its analog, Ba3Fe2Ge4O14=Ba3[(FeGe2)Ge2O14]”, Dokl. Akad. Nauk. SSSR, Vol. 255, pp. 1099-1104, 1980.
[13] A. A. Kaminskii, L. K. Aminov, V. L. Ermolaev et al., “Physics and Spectroscopy of Laser Crystals”, in Russian, Moscow, USSR, 1986.
[14] A. A. Selskii, “EPR Spectra of Cr3+ Ions in Sr3Ga2Ge4O14: Cr Single Crystals”,
J. Appl. Spectros., Vol. 68, Issue 3, pp.486-491, 2001.
[15] G. F. Koster, J.O. Dimmock, R.G. Wheeler, H. Statz, “Properties of 32 point groups”, MIT Press, Cambridge, UK, 1963.
[16] P. H. Butler, “Point Symmetry Group Applications”, Plenum, New York, USA, 1981.
[17] B. S. Tsukerblat, “Group Theory in Chemistry and Spectroscopy”, Academic Press, London, UK, 1994.
[18] S.K. Misra, C.P. Jr. Poole, H.A. Farach, “A review of spin Hamiltonian forms for various point-group site symmetries”, Appl. Magn. Reson., Vol. 11, Issue 1, pp. 29-46, 1996.
[19] R. Bo?a, “Theoretical Foundations of Molecular Magnetism”, Elsevier, Amsterdam, Holland, 1999.
[20] K. H. J. Buschow, F. R. de Boer, “Physics of Magnetism, Magnetic Materials”, Kluwer Academic, New York, USA, 2003.
[21] C. Rudowicz, “CONCEPT OF SPIN HAMILTONIAN, FORMS OF ZERO FIELD SPLITTING AND ELECTRONIC ZEEMAN HAMILTONIANS AND RELATIONS BETWEEN PARAMETERS USED IN EPR. A CRITICAL REVIEW”, Magn. Reson. Rev., Vol. 13, pp. 1-89, 1987; Erratum, C. Rudowicz, Magn. Reson. Rev., Vol. 13, pp. 335, 1988.
[22] C. RUDOWICZ, S.K. MISRA, “SPIN-HAMILTONIAN FORMALISMS IN ELECTRON MAGNETIC RESONANCE (EMR) AND RELATED SPECTROSCOPIES”, Appl. Spectrosc. Rev., Vol. 36, Issue 1, pp. 11-63, 2001.
[23] C. Rudowicz, “Transformation relations for the conventional Okq and normalised O`kq Stevens operator equivalents with k=1 to 6 and –k ? q ? k”, J. Phys. C Solid State Phys., Vol. 18, Number 7, pp. 1415-1430, 1985; Erratum: C. Rudowicz, J. Phys. C Solid State Phys., Vol. 18, Number 19, pp. 3837, 1985.
[24] C. Rudowicz, C. Y. Chung, „The generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elements”, J. Phys. Condens. Matter., Vol. 16, Number 32, pp. 5825-5847, 2004.
[25] D.J. Newman, B. Ng, “Superposition model”, Ch. 5 in: D.J. Newman, B. Ng (Eds.), “Crystal Field Handbook”, Cambridge University Press, UK, pp. 83–119, 2000.
[26] D.J. Newman, B. Ng, „The Superposition model of crystal fields“, Rep. Prog. Phys., Vol. 52, pp. 699-763, 1989.
[27] D.J. Newman, W. Urban, “Interpretation of S-state ion E.P.R. spectra”, Adv. Phys., Vol. 24, Issue 6, pp. 793-844, 1975.
[28] M. Andrut, M. Wildner, C. Rudowicz, C. Optical absorption spectroscopy in geosciences. Part II, Quantitative aspects of crystal fields, in Beran, A.; Libowitzky, E. (Eds) Spectroscopic Methods in Mineralogy - European Mineralogical Union Notes in Mineralogy Vol. 6, Eötvös University Press, Budapest, Hungry, Ch. 4, pp. 145-188, 2004.
[29] C. Rudowicz, “On the derivation of the superposition-model formulae using the transformation relations for the Stevens operators”, J. Phys. C: Solid State Phys., Vol. 20, Number 35, pp. 6033-6037, 1987.
[30] M. Aç?kgöz, “A study of the impurity structure for 3d3 (Cr3+ and Mn4+) ions doped into rutile TiO2 crystal”, Spectrochim. Acta A, Vol. 86, Issue 2, pp. 417-422, 2012.
[31] K.A. MĂŒller, W. Berlinger, J. Albers, “Paramagnetic resonance and local position of Cr3+ in ferroelectric BaTiO3”, Phys. Rev. B, Vol. 32, Issue 9, pp. 5837-5850, 1985.
[32] K.A. MĂŒller, W. Berlinger, “Superposition model for sixfold-coordinated Cr3+ in oxide crystals (EPR study)”, J. Phys. C: Solid State Phys., Vol. 16, Number 35, pp. 6861-6874, 1983.
[33] M. Heming, G. Lehmann, “Correlation of zero-field splittings and site distortions: Variation of
b2 FOR Mn2+ with ligand and coordination number”, Chem. Phys. Lett., Vol. 80, Issue 2, pp. 235-237, 1981.
[34] T. H. Yeom, Y. M. Chang, C. Rudowicz, “Cr3+ centres in LiNbO3: Experimental and theoretical investigation of spin hamiltonian parameters”, Solid State Commun., Vol. 87, Issue 3, pp. 245-249, 1993.
[35] E. Siegel, K. A. Muller, “Structure of transition-metal—oxygen-vacancy pair centers”, Phys. Rev. B, Vol. 19, Issue 1, pp. 109-120, 1979.
[36] C. Rudowicz, R. Bramley, “On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry”, J. Chem. Phys., Vol. 83, Issue 10, pp. 5192-5197, 1985.
[37] Y. Y. Yeung, D. J. Newman, “Superposition-model analyses for the Cr3+ 4A2 ground state, Phys. Rev. B, Vol. 34, Issue 4, pp. 2258-2265, 1986.
[38] Y. Y. Yeung, C. Rudowicz, “Ligand field analysis of the 3dN ions at orthorhombic or higher symmetry sites”, Comp. Chem., Vol. 16, Issue 3, pp. 207-216, 1992.
[39] Y. Y. Yeung, C.Rudowicz, “Crystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sites”, J. Comput. Phys., Vol. 109, Issue 1, pp. 150-152, 1993.
[40] Y. M. Chang, C. Rudowicz, Y.Y. Yeung, “Crystal field analysis of the 3dN ions at low symmetry sites including the ‘imaginary’ terms”, Computers in Physics, Vol. 8, Issue 5, pp. 583-588, 1994.
[41] X. Jun, D. Peizhen, Z. Qiang, G. Fuxi, “Optical Absorption Spectra of Cr3+ and Cr4+ in Sr3Ga2Ge4O14 Garnet Crystals”, Chin. Phys. Lett., Vol. 12, Issue 7, pp. 424-427,1995.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation