Full Paper View Go Back
Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14
R. Kripal1 , L. C. Shukla2
Section:Research Paper, Product Type: Journal-Paper
Vol.9 ,
Issue.6 , pp.44-48, Dec-2021
Online published on Dec 31, 2021
Copyright © R. Kripal, L. C. Shukla . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: R. Kripal, L. C. Shukla, âSuperposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14,â International Journal of Scientific Research in Physics and Applied Sciences, Vol.9, Issue.6, pp.44-48, 2021.
MLA Style Citation: R. Kripal, L. C. Shukla "Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14." International Journal of Scientific Research in Physics and Applied Sciences 9.6 (2021): 44-48.
APA Style Citation: R. Kripal, L. C. Shukla, (2021). Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14. International Journal of Scientific Research in Physics and Applied Sciences, 9(6), 44-48.
BibTex Style Citation:
@article{Kripal_2021,
author = {R. Kripal, L. C. Shukla},
title = {Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {12 2021},
volume = {9},
Issue = {6},
month = {12},
year = {2021},
issn = {2347-2693},
pages = {44-48},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2625},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2625
TI - Superposition model analysis for Cr3+ ions at orthorhombic sites in Sr3Ga2Ge4O14
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - R. Kripal, L. C. Shukla
PY - 2021
DA - 2021/12/31
PB - IJCSE, Indore, INDIA
SP - 44-48
IS - 6
VL - 9
SN - 2347-2693
ER -
Abstract :
Using superposition model (SPM) the zero field splitting (ZFS) parameters (ZFSPs) and crystal field parameters (CFPs) are found. Two substitutional sites at Ga3+ and one structural vacancy site, for Cr3+ ion in Sr3Ga2Ge4O14 (SGG) crystal together with distortion model are employed. The calculated ZFSPs agree well with the experimental values. The optical energy bands for Cr3+ in SGG are obtained using CFPs determined from SPM. The results show that Cr3+ ions introduce SGG lattice at Ga3+ sites.
Key-Words / Index Term :
Superposition model; Crystal field and zero-field splitting Hamiltonians; Optical spectroscopy; Cr3+ ions in Sr3Ga2Ge4O14 (SGG).
References :
[1] C. Rudowicz, P. Gnutek, M. Aç?kgöz, âSuperposition model in electron magnetic resonance spectroscopy â a primer for experimentalists with illustrative applications and literature databaseâ, Appl. Spectroscopy Rev. Vol. 54, pp.673-718, 2019.
[2] A. Abragam, B. Bleaney, âElectron Paramagnetic Resonance of Transition Ionâ, Clarendon Press, Oxford, UK, 1970; Dover, New York, USA, 1986.
[3] C.P. Jr. Poole, H.A. Farach, âTheory of Magnetic Resonanceâ, Wiley, New York, USA, 1987.
[4] J. R. Pilbrow, âTransition-Ion Electron Paramagnetic Resonanceâ, Clarendon Press, Oxford, UK, 1990.
[5] J. M. Spaeth, J. R. Niklas, R. H. Bartram, âStructural Analysis of Point Defects in Solidsâ, Springer Series in Solid-State Sciences Vol. 43, Springer, Berlin, Germany,1992.
[6] J. A. Weil, J. R. Bolton, âElectron Paramagnetic Resonance, Elemental Theory and Practical Applicationsâ, Wiley, New York, USA, 2007.
[7] B. G. Wybourne, âSpectroscopic Properties of Rare Earthâ, Wiley, New York, USA, 1965.
[8] C.A. Morrison, âCrystal Field for Transition-Metal Ions in Laser Host Materialsâ, Springer, Berlin, Germany, 1992.
[9] B.N. Figgis, A. Hitchman, âLigand Field Theory and its Applicationsâ, Wiley-VCH, New York, USA, 2000.
[10] J. Mulak, Z. Gajek, âThe Effective Crystal Field Potentialâ, Elsevier, Amsterdam, Holland, 2000.
[11] C. Rudowicz, M. Karbowiak,â Disentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin) Hamiltoniansâ, Coord. Chem. Rev., Vol. 287, pp.28-63, 2015.
[12] E. L. Belokoneva, M. A. Siminov, A. V. Butashin, B. V. Mill, N. V. Belov, âCrystal structure of Ca-gallogermanate, Ca3Ga2Ge4O14=Ca3Ge[(Ga2Ge)Ge2O14] and its analog, Ba3Fe2Ge4O14=Ba3[(FeGe2)Ge2O14]â, Dokl. Akad. Nauk. SSSR, Vol. 255, pp. 1099-1104, 1980.
[13] A. A. Kaminskii, L. K. Aminov, V. L. Ermolaev et al., âPhysics and Spectroscopy of Laser Crystalsâ, in Russian, Moscow, USSR, 1986.
[14] A. A. Selskii, âEPR Spectra of Cr3+ Ions in Sr3Ga2Ge4O14: Cr Single Crystalsâ,
J. Appl. Spectros., Vol. 68, Issue 3, pp.486-491, 2001.
[15] G. F. Koster, J.O. Dimmock, R.G. Wheeler, H. Statz, âProperties of 32 point groupsâ, MIT Press, Cambridge, UK, 1963.
[16] P. H. Butler, âPoint Symmetry Group Applicationsâ, Plenum, New York, USA, 1981.
[17] B. S. Tsukerblat, âGroup Theory in Chemistry and Spectroscopyâ, Academic Press, London, UK, 1994.
[18] S.K. Misra, C.P. Jr. Poole, H.A. Farach, âA review of spin Hamiltonian forms for various point-group site symmetriesâ, Appl. Magn. Reson., Vol. 11, Issue 1, pp. 29-46, 1996.
[19] R. Bo?a, âTheoretical Foundations of Molecular Magnetismâ, Elsevier, Amsterdam, Holland, 1999.
[20] K. H. J. Buschow, F. R. de Boer, âPhysics of Magnetism, Magnetic Materialsâ, Kluwer Academic, New York, USA, 2003.
[21] C. Rudowicz, âCONCEPT OF SPIN HAMILTONIAN, FORMS OF ZERO FIELD SPLITTING AND ELECTRONIC ZEEMAN HAMILTONIANS AND RELATIONS BETWEEN PARAMETERS USED IN EPR. A CRITICAL REVIEWâ, Magn. Reson. Rev., Vol. 13, pp. 1-89, 1987; Erratum, C. Rudowicz, Magn. Reson. Rev., Vol. 13, pp. 335, 1988.
[22] C. RUDOWICZ, S.K. MISRA, âSPIN-HAMILTONIAN FORMALISMS IN ELECTRON MAGNETIC RESONANCE (EMR) AND RELATED SPECTROSCOPIESâ, Appl. Spectrosc. Rev., Vol. 36, Issue 1, pp. 11-63, 2001.
[23] C. Rudowicz, âTransformation relations for the conventional Okq and normalised O`kq Stevens operator equivalents with k=1 to 6 and âk ? q ? kâ, J. Phys. C Solid State Phys., Vol. 18, Number 7, pp. 1415-1430, 1985; Erratum: C. Rudowicz, J. Phys. C Solid State Phys., Vol. 18, Number 19, pp. 3837, 1985.
[24] C. Rudowicz, C. Y. Chung, âThe generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elementsâ, J. Phys. Condens. Matter., Vol. 16, Number 32, pp. 5825-5847, 2004.
[25] D.J. Newman, B. Ng, âSuperposition modelâ, Ch. 5 in: D.J. Newman, B. Ng (Eds.), âCrystal Field Handbookâ, Cambridge University Press, UK, pp. 83â119, 2000.
[26] D.J. Newman, B. Ng, âThe Superposition model of crystal fieldsâ, Rep. Prog. Phys., Vol. 52, pp. 699-763, 1989.
[27] D.J. Newman, W. Urban, âInterpretation of S-state ion E.P.R. spectraâ, Adv. Phys., Vol. 24, Issue 6, pp. 793-844, 1975.
[28] M. Andrut, M. Wildner, C. Rudowicz, C. Optical absorption spectroscopy in geosciences. Part II, Quantitative aspects of crystal fields, in Beran, A.; Libowitzky, E. (Eds) Spectroscopic Methods in Mineralogy - European Mineralogical Union Notes in Mineralogy Vol. 6, Eötvös University Press, Budapest, Hungry, Ch. 4, pp. 145-188, 2004.
[29] C. Rudowicz, âOn the derivation of the superposition-model formulae using the transformation relations for the Stevens operatorsâ, J. Phys. C: Solid State Phys., Vol. 20, Number 35, pp. 6033-6037, 1987.
[30] M. Aç?kgöz, âA study of the impurity structure for 3d3 (Cr3+ and Mn4+) ions doped into rutile TiO2 crystalâ, Spectrochim. Acta A, Vol. 86, Issue 2, pp. 417-422, 2012.
[31] K.A. MĂŒller, W. Berlinger, J. Albers, âParamagnetic resonance and local position of Cr3+ in ferroelectric BaTiO3â, Phys. Rev. B, Vol. 32, Issue 9, pp. 5837-5850, 1985.
[32] K.A. MĂŒller, W. Berlinger, âSuperposition model for sixfold-coordinated Cr3+ in oxide crystals (EPR study)â, J. Phys. C: Solid State Phys., Vol. 16, Number 35, pp. 6861-6874, 1983.
[33] M. Heming, G. Lehmann, âCorrelation of zero-field splittings and site distortions: Variation of
b2 FOR Mn2+ with ligand and coordination numberâ, Chem. Phys. Lett., Vol. 80, Issue 2, pp. 235-237, 1981.
[34] T. H. Yeom, Y. M. Chang, C. Rudowicz, âCr3+ centres in LiNbO3: Experimental and theoretical investigation of spin hamiltonian parametersâ, Solid State Commun., Vol. 87, Issue 3, pp. 245-249, 1993.
[35] E. Siegel, K. A. Muller, âStructure of transition-metalâoxygen-vacancy pair centersâ, Phys. Rev. B, Vol. 19, Issue 1, pp. 109-120, 1979.
[36] C. Rudowicz, R. Bramley, âOn standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetryâ, J. Chem. Phys., Vol. 83, Issue 10, pp. 5192-5197, 1985.
[37] Y. Y. Yeung, D. J. Newman, âSuperposition-model analyses for the Cr3+ 4A2 ground state, Phys. Rev. B, Vol. 34, Issue 4, pp. 2258-2265, 1986.
[38] Y. Y. Yeung, C. Rudowicz, âLigand field analysis of the 3dN ions at orthorhombic or higher symmetry sitesâ, Comp. Chem., Vol. 16, Issue 3, pp. 207-216, 1992.
[39] Y. Y. Yeung, C.Rudowicz, âCrystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sitesâ, J. Comput. Phys., Vol. 109, Issue 1, pp. 150-152, 1993.
[40] Y. M. Chang, C. Rudowicz, Y.Y. Yeung, âCrystal field analysis of the 3dN ions at low symmetry sites including the âimaginaryâ termsâ, Computers in Physics, Vol. 8, Issue 5, pp. 583-588, 1994.
[41] X. Jun, D. Peizhen, Z. Qiang, G. Fuxi, âOptical Absorption Spectra of Cr3+ and Cr4+ in Sr3Ga2Ge4O14 Garnet Crystalsâ, Chin. Phys. Lett., Vol. 12, Issue 7, pp. 424-427,1995.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.