Full Paper View Go Back
Study of Heavy-Quarkonium Masses with Temperature-Dependent Screened Coulomb Potential
Dhirendra Singh1
Section:Research Paper, Product Type: Journal-Paper
Vol.10 ,
Issue.2 , pp.25-30, Apr-2022
Online published on Apr 30, 2022
Copyright © Dhirendra Singh . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Dhirendra Singh, “Study of Heavy-Quarkonium Masses with Temperature-Dependent Screened Coulomb Potential,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.2, pp.25-30, 2022.
MLA Style Citation: Dhirendra Singh "Study of Heavy-Quarkonium Masses with Temperature-Dependent Screened Coulomb Potential." International Journal of Scientific Research in Physics and Applied Sciences 10.2 (2022): 25-30.
APA Style Citation: Dhirendra Singh, (2022). Study of Heavy-Quarkonium Masses with Temperature-Dependent Screened Coulomb Potential. International Journal of Scientific Research in Physics and Applied Sciences, 10(2), 25-30.
BibTex Style Citation:
@article{Singh_2022,
author = {Dhirendra Singh},
title = {Study of Heavy-Quarkonium Masses with Temperature-Dependent Screened Coulomb Potential},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {4 2022},
volume = {10},
Issue = {2},
month = {4},
year = {2022},
issn = {2347-2693},
pages = {25-30},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2758},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2758
TI - Study of Heavy-Quarkonium Masses with Temperature-Dependent Screened Coulomb Potential
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - Dhirendra Singh
PY - 2022
DA - 2022/04/30
PB - IJCSE, Indore, INDIA
SP - 25-30
IS - 2
VL - 10
SN - 2347-2693
ER -
Abstract :
The screened Coulomb potential is adopted to study the heavy meson masses. An effort to make this potential model temperature dependent, modifications have been made by putting Debye mass in place of the screened parameter. An analytical technique is used to solve the Schrödinger equation, and Taylor’s series expansion approach is used to calculate the energy eigenvalues. The findings are used to calculate heavy mesons charmonium and bottomonium mass spectra. Our outcomes are in concurrence with the outcomes acquired from experimental and theoretical studies in several reported work. The present work can be used to determine other properties of quarkonium systems in future studies.
Key-Words / Index Term :
Heavy quarkonia spectroscopy, Schrödinger equation, screened Coulomb potential
References :
[1]. S.M. Kuchin and N. V. Maksimenko, “Characteristics of charged pions in the quark model with potential which is the sum of the Coulomb and Oscillator potential”, Journal of Theoretical and applied Physics.vol. 40, pp. 45-55, 2013.
[2]. R. Kumar and F. Chand, “Asymptotic study to the N-dimensional Radial Schrodinger Equation for the quark- antiquark system”, Communication in Theoretical Physics, vol. 59, pp. 456- 467, 2013.
[3]. M. Abu-Shady, T. A. Abdel-Karim and E. M. Khokha, “Exact solution of the N-dimensional Radial Schrödinger Equation via Laplace Transformation method with the Generalized Cornell potential”, Journal of theoretical Physics, vol.45, pp. 567- 587, 2018.
[4]. M. Abu-shady, “Heavy Quarkonia and mesons in the Cornell potential with harmonic oscillator potential in the N- dimensional Schrödinger equation”, International Journal of Applied Mathematics and Theoretical Physics, vol. 2(2), pp, 16-20, 2016.
[5]. A. Bettini, Introduction to Elementary Particle Physics, Cambridge University Press, 2018, pp. 143-154.
[6]. E. E. Ibekwe, T. N. Alalibo, S. O. Uduakobong A. N. Ikot, and N. Y. Abdullah, “Bound state solution of radial Schrödinger equation for the quark-antiquark interaction potential”, Iranian Journal, of Science Technology vol.20, pp. 913,2020.
[7]. A. N. Ikot, U. S. Okorie, A. T.Ngiagian, C. A. Onate, C. O. Edet, I. O. Akpan and P .O. Amadi, “Bound state solutions of the Schrödinger equation with energy-dependen molecular Kratzerpotential via Asymptotic iteration method”,Ecletica Quimica Journal, vol. 45 (1), pp. 66-76, 2020.
[8]. A. Al-Jamel and H. Widyan, “Heavy quarkonium mass spectra in a Coulomb field plus Quadratic potential using Nikiforov-Uvarov method” Canadian center of Science and Education.vol.4, pp.18-29, 2012.
[9]. A. Al-Oun, A. Al-Jamel, and H. Widyan, “Various properties of Heavy Quakonium from Flavor-independent Coulomb plus Quadratic potential. Jordan Journal of Physics, vol.40, pp.453-464, 2015.
[10]. E. Omuge, O. E. Osafile and M. C. Onyeajh, “Mass spectrum of mesons via WKB Approximation method”, Advance in High Energy. Phys.vol.10, pp.1143-1155, 2020.
[11]. Dong, S., Sun, G.-H., Dong, S.-H., Arbitrary.-Wave Solutions of the Schrödinger Equation for the Screen Coulomb Potential, International Journal of Modern Physics E 22 (6) (2013) 1350036.
[12]. Ikhdair, S. M., Sever, R., A perturbative treatment for the bound states of the Hellmann potential, Journal of Molecular Structure:THEOCHEM 809 (1-3) (2007) 103-113.
[13]. Liverts, E. Z., Drukarev, E. G., Krivec, R.,Mandelzweig,V.B., Analytic presentation of a solution of the Schrödinger equation, Few-Body Systems 44 (1-4) (2008) 367-370.
[14]. R. Rani, S. B. Bhardwaj, and F. Chand, “Bound state solutions to the Schrödinger equation for some diatomic molecules”,Pramana Journal of Physics, vol.91, pp.1602-1615, 2018.
[15]. R. Kumar and F. Chand, Phys. Scr. 85 (2012) 055008; Phys. Scr. 86 (2012) 027002
[16]. B. J. Falaye ,K.J. Oyewumi, T. T. Ibrahim, M. A. Punyasena, and C. A. Onate, Bound solutions of the Hellmann potential. Canad. J Phys. 91 (2013) 98.
[17]. M.Abu-Shady,N-dimensional Schrödinger equation at finite temperature using the Nikiforov-Uvarov method. J. Egypt. Math. Soci. 23 (2016)4.
[18]. M.Tanabashi , C. D. Carone,T.G.Trippe, and C.G. Wohl, Particle Data Group. Phys. Rev. D, 98 (2018)546.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.