Full Paper View Go Back
Superposition Model Calculation of Cr3+ Doped EuAl3 (BO3)4
Ram Kripal1
Section:Research Paper, Product Type: Journal-Paper
Vol.10 ,
Issue.3 , pp.32-36, Jun-2022
Online published on Jun 30, 2022
Copyright © Ram Kripal . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Ram Kripal, âSuperposition Model Calculation of Cr3+ Doped EuAl3 (BO3)4,â International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.3, pp.32-36, 2022.
MLA Style Citation: Ram Kripal "Superposition Model Calculation of Cr3+ Doped EuAl3 (BO3)4." International Journal of Scientific Research in Physics and Applied Sciences 10.3 (2022): 32-36.
APA Style Citation: Ram Kripal, (2022). Superposition Model Calculation of Cr3+ Doped EuAl3 (BO3)4. International Journal of Scientific Research in Physics and Applied Sciences, 10(3), 32-36.
BibTex Style Citation:
@article{Kripal_2022,
author = {Ram Kripal},
title = {Superposition Model Calculation of Cr3+ Doped EuAl3 (BO3)4},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {6 2022},
volume = {10},
Issue = {3},
month = {6},
year = {2022},
issn = {2347-2693},
pages = {32-36},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2826},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2826
TI - Superposition Model Calculation of Cr3+ Doped EuAl3 (BO3)4
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - Ram Kripal
PY - 2022
DA - 2022/06/30
PB - IJCSE, Indore, INDIA
SP - 32-36
IS - 3
VL - 10
SN - 2347-2693
ER -
Abstract :
Superposition model (SPM) is used to calculate zero field splitting (ZFS) parameters (ZFSPs) and crystal field parameters (CFPs) of Cr3+ doped EuAl3(BO3)4 (EAB). Substitutional and interstitial sites for Cr3+ ion in EAB crystal and distortion are taken into account for calculation. The determined ZFSPs are in reasonable agreement with the experimental values when distortion is taken into account. The optical energy band positions for Cr3+ in EAB are found using CFPs obtained from SPM and CFA package. The results suggest that Cr3+ ions substitute EAB lattice at Al3+ sites.
Key-Words / Index Term :
Superposition model; Crystal field: zero-field splitting; Optical spectroscopy; Cr3+ ions in EAB.
References :
[1] E. Y. Borovikova, K. N. Boldyrev, S M. Aksenov, E. A. Dobretsova, V. S. Kurazhkovskaya, N. I. Leonyuk, A. E. Savon, D. V. Deyneko, D. A. Ksenofontov, âCrystal growth, structure, infrared spectroscopy, and luminescent properties of rare-earth gallium borates RGa3(BO3)4â, R = Nd, SmâEr, Y, Opt. Mater., Vol. 49, pp. 304-311, 2015.
[2] P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper, âHighly efficient diode-pumped ytterbium- doped yttrium aluminum borate laserâ, Opt. Commun., Vol. 174, pp. 467-470, 2000.
[3] P. A. Burns, J. M. Dawes, P. Dekker, and J. A. Paper, âCoupled-cavity, single-frequency, tunable cw Yb:YAB yellow microchip laserâ, Opt. Commun., Vol. 207, pp. 315-320, 2002.
[4] A. D. Balaev, L. N. Bezmaternykh, I. A. Gudim, V. L. Temerov, S. G. Ovchinnikov, and S. A. Kharlamova, âMagnetic properties of trigonal GdFe3(BO3)4â, J. Magn. Magn. Mater., Vol. 258- 9, pp. 532-534, 2003.
[5] S. A. Kharlamova, S. G. Ovchinnikov, A. D. Balaev, M. F. Thomas, L. S. Lyubutin, and A. G. Gavriliuk, âSpin reorientation effects in GdFe3(BO3)4 induced by applied field and Temperatureâ, J. Exp. Theor. Phys. , Vol. 101, pp. 1098-1105, 2005.
[6] J. A. Campa, C. Cascales, E. Gutierrez-Puebla, M. A. Monge, I. Raines, and C. Ruiz-Valero, âCrystal Structure, Magnetic Order, and Vibrational Behavior in Iron Rare-Earth Boratesâ Chem. Mater., Vol. 9, pp. 237-240, 1997.
[7] A. K. Zvezdin, S. S. Krotov, A. M. Kadomtseva, G. P. Vorobâev, Yu. F. Popov, A. P. Pyatakov, L. N. Bezmaternykh, and E. A. Popova, âMagnetoelectric effects in gadolinium iron borate GdFe3(BO3)4â, JETP Lett. , Vol. 81, pp. 272-276, 2005.
[8] A.D. Prokhorov, E.E. Zubov, A.A. Prokhorov, L.F. Chernush, R. Minyakaev, V.P. Dyakonov, and H. Szymczak, âEPR spectra of Cr3+ ion in the Van Vleck paramagnet EuAl3(BO3)4â, Phys. Status Solidi B, pp. 1â8, 2013 / DOI
10.1002/pssb.201248571.
[9] A. A. Prokhorov, L. F. Chernush, T. N. Melnik, R. Minikayev, A. Mazur, V. Babin, M. Nikl, J. Lancok, A. D. Prokhorov, âOptical and magnetic properties of the ground state of Cr3+ doping ions in REM3(BO3)4 single crystalsâ, Sci. Rept., Vol.9, pp. 12787(13 pages), 2019.
[10] C. Rudowicz, M. Karbowiak, âDisentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin) Hamiltoniansâ, Coord. Chem. Rev., Vol. 287, pp.28-63,2015.
[11] C. Rudowicz, âCONCEPT OF SPIN HAMILTONIAN, FORMS OF ZERO FIELD SPLITTING AND ELECTRONIC ZEEMAN HAMILTONIANS AND RELATIONS BETWEEN PARAMETERS USED IN EPR. A CRITICAL REVIEWâ, Magn. Reson. Rev., Vol. 13, pp.1-89, 1987; Erratum, C. Rudowicz, Magn. Reson. Rev., Vol. 13, pp.335, 1988.
[12] C. Rudowicz, S.K. Misra, âSPIN-HAMILTONIAN FORMALISMS IN ELECTRON MAGNETIC RESONANCE (EMR) AND RELATED SPECTROSCOPIESâ, Appl. Spectrosc. Rev., Vol. 36,Issue 1,pp. 11-63, 2001.
[13] C. Rudowicz, âTransformation relations for the conventional Okq and normalised O`kq Stevens operator equivalents with k=1 to 6 and âk ? q ? kâ, J. Phys. C Solid State Phys.,Vol. 18, Number 7, pp.1415-1430, 1985; Erratum: C. Rudowicz, J. Phys. C Solid State Phys., Vol.18,Number 19, pp.3837, 1985.
[14] C. Rudowicz, C. Y. Chung, âThe generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elementsâ, J. Phys. Condens. Matter., Vol.16,Number 32, pp.5825-5847, 2004.
[15] D.J. Newman, B. Ng, âSuperposition modelâ, Ch. 5 in: D.J. Newman, B. Ng (Eds.), âCrystal Field Handbookâ, Cambridge University Press,UK, pp. 83â119, 2000.
[16] D.J. Newman, B. Ng, âThe Superposition model of crystal fieldsâ, Rep. Prog. Phys., Vol.52,pp. 699-763, 1989.
[17] D.J. Newman, W. Urban, âInterpretation of S-state ion E.P.R. spectraâ, Adv. Phys.,Vol. 24,Issue 6,pp. 793-844, 1975.
[18] C. Rudowicz, âOn the derivation of the superposition-model formulae using the transformation relations for the Stevens operatorsâ, J. Phys. C: Solid State Phys., Vol.20,Number 35, pp. 6033-6037,1987.
[19] C. Rudowicz, P. Gnutek, M. Aç?kgöz, âSuperposition model in electron magnetic resonance spectroscopy â a primer for experimentalists with illustrative applications and literature databaseâ, Appl. Spectroscopy Rev.Vol. 54,pp.673-718, 2019.
[20] M. Aç?kgöz, âA study of the impurity structure for 3d3 (Cr3+ and Mn4+) ions doped into rutile TiO2 crystalâ, Spectrochim. Acta A, Vol.86, Issue 2,pp.417-422, 2012
[21] K.A. MĂŒller, W. Berlinger, J. Albers, âParamagnetic resonance and local position of Cr3+ in ferroelectric BaTiO3â, Phys. Rev. B, Vol. 32, Issue 9, pp.5837-5850, 1985.
[22] K.A. MĂŒller, W. Berlinger, âSuperposition model for sixfold-coordinated Cr3+ in oxide crystals (EPR study)â, J. Phys. C: Solid State Phys.,Vol. 16,Number 35,pp. 6861-6874, 1983.
[23] M. Heming, G. Lehmann, âCorrelation of zero-field splittings and site distortions: Variation of b2 FOR Mn2+ with ligand and coordination numberâ, Chem. Phys. Lett., Vol.80,Issue 2,pp. 235-237, 1981.
[24] T. H. Yeom, Y. M. Chang, C. Rudowicz, âCr3+ centres in LiNbO3: Experimental and theoretical investigation of spin hamiltonian parametersâ, Solid State Commun., Vol.87,Issue 3, pp. 245-249, 1993.
[25] E. Siegel, K. A. Muller, âStructure of transition-metalâoxygen-vacancy pair centersâ, Phys. Rev. B, Vol. 19, Issue 1,pp. 109-120, 1979.
[26] C. Rudowicz, R. Bramley, âOn standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetryâ, J. Chem. Phys., Vol.83,Issue 10, pp. 5192-5197, 1985.
[27] Y. Y. Yeung, D. J. Newman, âSuperposition-model analyses for the Cr3+ 4A2 ground stateâ, Phys. Rev. B, Vol.34,Issue 4, pp. 2258-2265, 1986.
[28] Y. Y. Yeung, C. Rudowicz, âLigand field analysis of the 3dN ions at orthorhombic or higher symmetry sitesâ, Comp. Chem., Vol.16,Issue 3, pp. 207-216, 1992.
[29] Y. Y. Yeung, C.Rudowicz, âCrystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sitesâ, J. Comput. Phys., Vol.109,Issue 1, pp. 150-152, 1993.
[30] Y. M. Chang, C. Rudowicz, Y.Y. Yeung, âCrystal field analysis of the 3dN ions at low symmetry sites including the âimaginaryâ termsâ, Computers in Physics, Vol.8,Issue 5,pp. 583-588, 1994.
[31] B. G. Wybourne, âSpectroscopic Properties of Rare Earthâ, Wiley, New York, USA, 1965.
[32] B.N. Figgis, A. Hitchman, âLigand Field Theory; its Applicationsâ, Wiley-VCH, New York, USA, 2000.
[33] J. P. R. Wells, M. Yamaga, T. P. J. Han, M. Honda, âElectron paramagnetic resonance and optical properties of Cr3+ dopedYAl3(BO3)4â, J. Phys.:Condens. Matter., Vol.15, pp. 539-547, 2003.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.