Full Paper View Go Back

Monitoring Climate Change using Satellite-observed Earth’s Surface Temperature: A Review

Thomas U. Omali1

Section:Review Paper, Product Type: Journal-Paper
Vol.10 , Issue.4 , pp.15-22, Aug-2022


Online published on Aug 31, 2022


Copyright © Thomas U. Omali . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Thomas U. Omali, “Monitoring Climate Change using Satellite-observed Earth’s Surface Temperature: A Review,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.4, pp.15-22, 2022.

MLA Style Citation: Thomas U. Omali "Monitoring Climate Change using Satellite-observed Earth’s Surface Temperature: A Review." International Journal of Scientific Research in Physics and Applied Sciences 10.4 (2022): 15-22.

APA Style Citation: Thomas U. Omali, (2022). Monitoring Climate Change using Satellite-observed Earth’s Surface Temperature: A Review. International Journal of Scientific Research in Physics and Applied Sciences, 10(4), 15-22.

BibTex Style Citation:
@article{Omali_2022,
author = {Thomas U. Omali},
title = {Monitoring Climate Change using Satellite-observed Earth’s Surface Temperature: A Review},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {8 2022},
volume = {10},
Issue = {4},
month = {8},
year = {2022},
issn = {2347-2693},
pages = {15-22},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2889},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2889
TI - Monitoring Climate Change using Satellite-observed Earth’s Surface Temperature: A Review
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - Thomas U. Omali
PY - 2022
DA - 2022/08/31
PB - IJCSE, Indore, INDIA
SP - 15-22
IS - 4
VL - 10
SN - 2347-2693
ER -

405 Views    177 Downloads    55 Downloads
  
  

Abstract :
Anthropogenic influence on climate modification is currently apparent more than ever, and this is comprehensible from the measurements of various climate variables such as the Earth`s surface temperature. The investigation of climate variables is a challenging task as no one technique can reliably produce the essential data at both fine and broad scales. Accurate observations of surface temperature are traditionally available from functional ground-based weather stations. Unfortunately, this network of stations is not dense enough in terms of spatial extent for a detailed spatial assessment of the temperature field. However, the application of the satellite-based observation method makes it possible for multi-scale and instantaneous observations with a consistent temporal revisit concerning the Earth`s processes. Therefore, this review is primarily focused on monitoring climate change using surface temperature data from satellite remote sensing. Recent papers that were published in the English language between 2013 and 2022 were accessed and used for the review. The research specifically emphasized the global temperature trend, and Earth’s surface temperature observation including Land Surface Temperature, and Sea Surface Temperature. Summarily, it was shown that the satellite-based temperature time-series data is important for studying the climate system. Also, the current Earth Observation System and many proposed satellite systems will enhance assessment regarding the Essential Climate Variables. Thus, satellite remote sensing is a potent tool for comprehending the Earth`s surface temperature and climate change.

Key-Words / Index Term :
Air temperature; Anthropogenic; GHG; LST; Satellite; SST; Weather station

References :
[1] S.M. Sterling, A. Ducharne, J. Polcher, “The Impact of Global Land-Cover Changes on the Terrestrial Water Cycle”, Nat. Clim. Chang., Vol.3, p.385, 2013.
[2] D.S. Matawal, D.J. Maton, “Climate Change and Global Warming: Signs, Impact and Solutions”, Int. J. Environ. Sci. Dev., Vol.4, pp.162-66, 2013.
[3] F. Johnsson, J. Kjärstad, J. Rootzén, “The Threat to Climate Change Mitigation Posed by the Abundance of Fossil Fuels”, Clim. Pol., Vol.19, No,2, pp.258-274, 2018.
[4] T.U. Omali, F.I. Okeke, “Global Significance Of Terrestrial Carbon Stocks”, GIS Business, 2020, Vol.15, No.4, pp.33-42.
[5] H. Zhang, F. Zhang, G. Zhang, Y. Ma, K. Yang, M. Ye, “Daily Air Temperature Estimation on Glacier Surfaces in the TibetanPlateau using MODIS LST Data”, Journal of Glaciology, Vol.64, No,243, pp.132–147, 2018.
[6] L.J. Cao, Y.N. Zhu, G.L. Tang, F. Yuan, Z.W. Yan, “Climatic Warming in China According to a Homogenized Dataset from 2419 Stations”, Int. J. Climatol., Vol.36, pp.4384–4392, 2016.
[7] Intergovernmental Panel on Climate Change, “Climate Change 2014 Synthesis Report Summary for Policymaker”, IPCC.CH. 2014. Available from: https://www. ipcc.ch/site/assets/uploads/2018/02/ AR5_SYR_FINAL_SPM.pdf
[8] Intergovernmental Panel on Climate Change, “Global Warming of 1.5 degrees Celsius Summary for Teachers”, IPCC. CH. 2018. Available from: https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/ST1.5_OCE_LR.pdf
[9] A.L. Gallant, W. Sadinski, J.F. Brown, “Senay, G.B., Roth, M.F. Challenges in Complementing Data from Ground-Based Sensors with Satellite-Derived Products to Measure Ecological Changes in Relation to Climate—Lessons from Temperate Wetland-Upland Landscapes”, Sensors, Vol.18, pp.880-918, 2018.
[10] S. Suresh, V. Ajay, K. Mani, “Estimation of Land Surface Temperature of High Range Mountain Landscape of Devikulam Taluk using Landsat 8 data. Int. J. Res. Engin. Technol., Vol.5, No.1, pp.92-96, 2016.
[11] I. Kloog, F. Nordio, B.A. Coull, J. Schwartz, “Predicting Spatiotemporal Mean Air Temperature using MODIS Satellite Surface Temperature Measurements across the Northeastern USA”, Remote Sens. Environ., Vol.150, pp.132–139, 2014.
[12] J. John, G. Bindu, B. Srimuruganandam, A. Wadhwa, P. Rajan, “Land Use/Land Cover and Land Surface Temperature Analysis in Wayanad District, India, using Satellite Imagery. Ann GIS., 2020. Available from https://doi. org/ 10. 1080/ 19475 683. 2020. 17336 62
[13] J.A. Torrion, S.J. Maas, W. Guo, J.P. Bordovsky, A.M. Cranmer, “A Three-Dimensional Index for Characterizing Crop Water Stress”, Remote Sens., Vol.6, pp.4025-4042, 2014.
[14] Z. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.F. Trigo, J.A. Sobrino, “Satellite-derived Land Surface Temperature: Current Status and Perspectives”, Remote Sens. Environ., Vol.131, pp.14–37, 2013.
[15] C. Cammalleri, J. Vogt, “On the Role Of Land Surface Temperature as Proxy of Soil Moisture Status for Drought Monitoring in Europe”, Remote Sens., Vol.7, pp.16849-16864, 2015.
[16] X. Meng, J. Cheng, S. Liang, “Estimating Land Surface Temperature from Feng Yun-3C/MERSI Data using a New Land Surface Emissivity Scheme”, Remote Sens., Vol.9, p.1247, 2017.
[17] L. Fang, X. Zhan, C. Hain, J. Yin, J. Liu, M. Schull, “An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts using two Different Data Assimilation Approaches”, Remote Sens., Vol.10, p,625, 2018.
[18] M. Martin, D. Ghent, A. Pires, F.-M. Göttsche, J. Cermak, J. Remedios, “Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Datasets over Multiple Stations and Years”, Remote Sens., Vol.11, p,479, 2019.
[19] S.-B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, R. Tang, “Generation of a Time-Consistent Land Surface Temperature Product from MODIS Data”, Remote Sens., Environ., Vol.140, pp.339-349, 2014.
[20] U. Avdan, G. Jovanovska, “Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data”, Journal of Sensors, Article ID 1480307, 8 pages, 2016. Available from http://dx.doi.org/10.1155/2016/1480307
[21] R. Singh, C. Singh, S.P. Ojha, A.S. Kumar, C.M. Kishtawal, A.S.K. Kumar, “Land Surface Temperature from INSAT-3D Imager Data: Retrieval and Assimilation in NWP Model”, J. Geophys. Res. Atmos., Vol.121, pp.6909–6926, 2016, doi:10.1002/2016JD024752.
[22] A.G. O`Carroll, E.M. Armstrong, H.M. Beggs, M. Bouali, K.S. Casey, G.K. Corlett, W. Wimmer, “Observational Needs of Sea Surface Temperature”, Front. Mar. Sci., Vol. 6, p.420, 2019.
[23] A. Ogunode, M. Akombelwa, “An Algorithm to Retrieve Land Surface Temperature using Landsat-8 Dataset”, South African Journal of Geomatics, Vol.6, No.2, pp.262-276, 2017.
[24] K.B. Mao, Y. Maa, X.L. Tan, X.Y. Shen, G. Liu, Z.L. Li, J.M. Chen, L. Xia, “Global surface temperature change analysis based on MODIS data in recent twelve years”, Advances in Space Research, Vol.59, pp.503–512, 2016.
[25] H.-M. Zhang, J.H. Lawrimore, B. Huang, M.J. Menne, X. Yin, A. Sánchez-Lugo, …, C.N. Williams, “Updated temperature data give a sharper view of climate trends”, EOS. 2019. https ://doi.org/10.1029/2019E O1282 29
[26] K. Cowtan, R.G. Way, “Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends”, Q J R Meterol. Soc., Vol.140, pp.1935–1944, 2014. doi: https ://doi.org/10.1002/qj.2297
[27] D. Ilyas, Q. Junaid, S. Aparna, “Estimation of LST from multisensor thermal remote sensing data and evaluating the influence of sensor characteristics”, Annals of GIS, Vol.25, No.3, pp.263-281, 2019. doi: 10.1080/19475683.2019.1623318
[28] P.K. Koner, “Enhancing Information Content in the Satellite-Derived Daytime Infrared Sea Surface Temperature Dataset Using a Transformative Approach”, Front. Mar. Sci., Vol.7, 556626, 2020. doi: 10.3389/fmars.2020.556626
[29] A. Kumar, M.P. Sharma, “Assessment of carbon stocks in forest and its implications on global climate changes”, J. Mater. Environ. Sci., Vol.6, No.12, pp.3548-3564, 2015.
[30] A.B. Berlie, “Global Warming: A Review of the Debates on the Causes, Consequences and Politics of Global Response”, Ghana Journal of Geography, Vol.10, No.1, pp.144–164, 2018.
[31] National Oceanic and Atmospheric Administration, “Carbon dioxide levels in the atmosphere hit a record high in May viewed 6 June 2020”, Available from https://www.noaa.gov/news/Carbon-dioxide-levels-in-atmosphere-hit-record- high-in-may
[32] O.R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, … , J.C. Minx, (Eds.), “Climate change 2014: Mitigation of Climate Change”, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer]. Cambridge University Press, Cambridge, UK & New York, NY, 2014.
[33] U. Cubasch, D. Wuebbles, D. Chen, M.C. Facchini, D. Frame, N. Mahowald, J.-G. Winther, Introduction. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, …, P.M. Midgley, (Eds.)., “Climate Change 2013: The Physical Science Basis”, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom & New York, NY, USA, 2013.
[34] A.V. Karmalkar, R.S. Bradley, “Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States”, PLoS ONE, Vol.12, No.1, e0168697., 2017. doi:10.1371/journal. pone.0168697
[35] A. Gulzar, M.A. Mehmood, S.A. Ganie, I. Showqi, “A Brief Review on Global Warming and Climate Change: Consequences and Mitigation Strategies”, International Journal of Research in Science and Engineering, Vol.7, No.4, pp.2146-2156, 2018.
[36] G.C. Hegerl, S. Brönnimann, T. Cowan, A.R. Friedman, E. Hawkins, C. Iles, …, S. Undorf, “Causes of Climate Change over the Historical Record”, Environ. Res. Lett., 14, 123006, 2019.
[37] G. Madge, “2022 is expected to continue the run of the world`s warmest years”, Press release, 13:44 (UTC) on Tue 21 Dec 2021. Available from https://www.metoffice.gov.uk/about-us/press-office/news/weather-and-climate/2021/2022-global-temperature-forecast#:~:text=The%20Met%20Office`s%20forecast%20for,temperature%20so%20far%20this%20year.
[38] S.J. Hooker, G. Duveiller, A. Cescatti, “A Global Dataset of Air Temperature Derived from Satellite Remote Sensing and Weather Stations”, Sci. Data., Vol.5,180246, 2018.
[39] C.-D. Xu, J.-F. Wang, M.-G. Hu, Q.-X. Li, “Interpolation Of Missing Temperature Data at Meteorological Stations using P-BSHADE”, J. Clim., Vol.26, No.19, pp.7452–7463, 2013.
[40] Intergovernmental Panel on Climate Change, Climate Change 2013. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, ..., P.M. Midgley (eds.)]. The Physical Science Basis”, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom & New York, USA, 2013.
[41] NOAA National Centers for Environmental Information, “State of the Climate: Global Climate Report for Annual 2021”, published online January 2022. Available from https://www.ncdc.noaa.gov/sotc/global/202113.
[42] R. Krishnan, C. Dhara, The Executive Summary (ES). In R. Krishnan, J. Sanjay, C. Gnanaseelan, M. Mujumdar, A. Kulkarni, S. Chakraborty, (Eds.)., “Assessment of Climate Change over the Indian region: A Report of the Ministry of Earth Sciences (MoES), Government of India”, Springer Nature. Singapore, 2020. Available from https://doi.org/10.1007/978-981-15-4327-2
[43] Intergovernmental Panel on Climate Change, “The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change”, IPCC, CH. 2021. ISBN 978-92-9169-158-6.
[44] D.L. Hartmann, A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. Charabi, …, P.M. Zhai, Observations: Atmosphere and Surface. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, ..., P.M. Midgley, (Eds.)., “Climate Change 2013: The Physical Science Basis”, Contribution of Working Group I to the Fifth Assessment Report of the IPCC. Cambridge University Press, Cambridge, United Kingdom & New York, USA, 2013.
[45] Climate Central, “Top 10 Warmest Years on Record. Researching and reporting the science and impacts of climate change”, 2020. Available from https://www.climatecentral.org/gallery/graphics/top-10-warmest-years-on-record
[46] S.K. Gulev, P.W. Thorne, J. Ahn, F.J. Dentener, C.M. Domingues, S. Gerland, …, R.S. Vose, Changing State of the Climate System (Chapter 2). In V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, …, B. Zhou, (eds.)]., “Climate Change: The Physical Science Basis”, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, UK, 2021.
[47] World Meteorological Organization, “The State of the Global Climate”, public. wmo. int., 2020.
[48] World Meteorological Organization, “The State of Climate in 2021: Extreme events and major impacts”, Press Release Number: 31102021, 2021.
[49] N. Watts, M. Amann, N. Arnell, S. Ayeb-Karlsson, J. Beagley, K. Belesova, A. Costello, “The 2020 report of The Lancet Countdown on health and Climate Change: Responding to Converging Crises”, The Lancet, Vol.397, No.10269, pp.129–170, 2021. Available from doi:10.1016/S0140-6736(20)32290-X.
[50] H. Guan, X.P. Zhang, O. Makhnin, Z.A. Sun, “Mapping Mean Monthly Temperatures over a Coastal Hilly Area Incorporating Terrain Aspect Effects”, J. Hydrometeorol., Vol.14, pp.233–250, 2013.
[51] S. Chen, J. Guo, “Spatial Interpolation Techniques: their Applications in Regionalizing Climate-Change Series and Associated Accuracy Evaluation in Northeast China”, Geomatics. Natural Hazards and Risk, Vol.8, No.2, pp.689-705, 2017.
[52] M. Kilibarda, T. Hengl, G.B.M. Heuvelink, B. Gräler, E. Pebesma, M. Perffcec Tadic´, B. Bajat, “Spatiotemporal Interpolation of Daily Temperatures for Global Land Areas at 1 km Resolution”, J. Geophys. Res. Atmos., Vol.119, pp.2294–2313, 2014.
[53] B. Parmentier, B. McGill, A. Wilson, J. Regetz, W. Jetz, R. Guralnick, …, M. Schildhauer, “An Assessment of Methods and Remote-Sensing Derived Covariates for Regional Predictions of 1 km Daily Maximum Air Temperature”, Remote Sensing, Vol.6, No.9, pp.8639–8670, 2014. Available from https://doi.org/10.3390/rs6098639
[54] Y. Xu, A. Knudby, H.C. Ho, “Estimating Daily Maximum Air Temperature from MODIS in British Columbia, Canada”, Int. J. Remote Sens., 2014, Vol.35, pp.8108–8121.
[55] L.J. Cao, P. Zhao, Z.W. Yan, P. Jones, Y.N. Zhu, Y. Yu, G.L. Tang, “Instrumental Temperature Series in Eastern and Central China Back to the Nineteenth Century”, J. Geophys. Res. Atmos., Vol.118, pp.8197–8207, 2013.
[56] L. Li, W. Zhang, T. Xu, J. Zhou, P. Wang, P. Zhai, P. Jones, “Comparisons Of Time Series of Annual Mean Surface Air Temperature for China Since the 1900s”, Bull. Amer. Meteor. Soc., Vol.98, pp.699–711, 2017.
[57] H. Zhang, F. Zhang, M. Ye, T. Che, G. Zhang, “Estimating Daily Air Temperatures over the Tibetan Plateau by Dynamically Integrating MODIS LST Data”, J. Geophys. Res. Atmos., Vol.121, No.19, pp.425–441, 2016.
[58] M. Otgonbayar, C. Atzberger, M. Mattiuzzi, A. Erdenedalai, “Estimation of Climatologies of Average Monthly Air Temperature over Mongolia using MODIS Land Surface Temperature (LST) Time Series and Machine Learning Techniques”, Remote Sens., Vol.11, No.21, pp.1–24, 2019.
[59] R. Huang, C. Zhang, J. Huang, D. Zhu, L. Wang, J. Liu, “Mapping of Daily Mean Air Temperature in Agricultural Regions using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data”, Remote Sensing, Vol.7, No.7, pp.8728–8756, 2015.
[60] W. Zhu, A. Liu, S. Jia, “Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products”, Remote Sens Environ., Vol.130, pp.62–73, 2013.
[61] P.T. Noi, M. Kappas, J. Degener, “Estimating Daily Maximum and Minimum Land Air Surface Temperature using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam”, Remote Sens., Vol.8, No.12, p.1002, 2016.
[62] S. Liu, H. Su, R. Zhang, J. Tian, W. Wang, “Estimating the Surface Air Temperature by Remote Sensing in Northwest China using an Improved Advection-Energy Balance for Air Temperature Model”, Adv. Meteorol., Article ID 4294219. (11 pages), 2016.
[63] C.E. Bulgin, O. Embury, C.J. Merchant, “Sampling Uncertainty in Gridded Sea Surface Temperature Products and Advanced Very High-Resolution Radiometer (AVHRR) Global Area Coverage (GAC) data”, Remote Sens. Environ., Vol.177, pp.287–294, 2016.
[64] N. Clinton, P. Gong, “MODIS Detected Surface Urban Heat Islands and Sinks: Global Locations and Controls”, Remote Sens. Environ., Vol.134, pp.294–304, 2013.
[65] B. Wei, Y. Bao, S. Yu, S. Yin, Y. Zhang, “Analysis of Land Surface Temperature Variation Based on MODIS Data a Case Study of the Agricultural Pastural Ecotone of Northern China”, International Journal of Applied Earth Observations and Geoinformation, Vol.100, 102342, 2021.
[66] A. Rajeshwari, N.D. Mani, “Estimation of Land Surface Temperature of Dindigul District Using Landsat 8 Data”, International Journal of Research in Engineering and Technology, Vol.3, No.5, 2014.
[67] F. Wang, Z. Qin, C. Song, L. Tu, A. Karnieli, S. Zhao, “An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data”, Remote. Sens., Vol.7, No.4, 4268 – 4289, 2015.
[68] F. Zhang, H. Kung, V.C. Johnson, B.I. LaGrone, J. Wang, “Change Detection of Land Surface Temperature and Some Related Parameters using Landsat Image: A Case Study of the Ebinur Lake Watershed, Xinjiang, China”, Wetlands, Vol.38, 65–80, 2017.
[69] M. Ndossi, U. Avdan, “Inversion of Land Surface Temperature using Terra ASTER Data: A Comparison of three Algorithms”, Remote Sens., Vol.8, pp.993–1012, 2016.
[70] Z. Hilman, A. Saepuloh, V. Susanto, “Application of Land Surface Temperature Derived from ASTER TIR to Identify Volcanic Gas Emission around Bandung Basin”, International Journal of Remote Sensing and Earth Sciences, Vol.16, No.2, pp.179-186, 2019.
[71] P. Guillevic, J. Biard, G. Hulley, J. Privette, S. Hook, A. Olioso, …, I. Csiszar, “Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements”, Remote Sens., Environ., Vol.154, pp.19–37, 2014.
[72] H. Li, D. Sun, Y. Yuc, H. Wang, Y. Liue, Q. Liua, ..., B. Cao, “Evaluation of the VIIRS and MODIS LST Products in an Arid Area of Northwest China”, Remote Sensing of Environment, 142, pp.111–121, 2014.
[73] B.H. Tang, K. Shao, Z.L. Li, H. Wu, F. Nerry, G.Q. Zhou, “Estimation and Validation of Land Surface Temperatures from Chinese Second-Generation Polar-Orbit FY-3a VIRR Data”, Remote Sens., Vol.7, pp.3250–3273, 2015.
[74] C.E. Bulgin, O. Embury, G. Corlett, C.J. Merchant, “Independent Uncertainty Estimates for Coefficient Based Sea Surface Temperature Retrieval from the Along-Track Scanning Radiometer instruments”, Remote Sens. Environ., Vol.178, pp.213–222, 2016.
[75] D.J. Ghent, G.K. Corlett, F.M. Göttsche, J.J. Remedios, “Global Land Surface Temperature from the Along-Track Scanning Radiometers”, J. Geophys. Res. Atmos., Vol.122, pp.167–193, 2017.
[76] X. Ouyang, D. Chen, S.B. Duan, Y. Lei, Dou, Y., Hu, G. , “Validation and Analysis of Long-Term AATSR Land Surface Temperature Product in the Heihe River Basin, China”, Remote Sens., Vol.9, p.152, 2017.
[77] Z. Heng, X. Jiang, “An Assessment of the Temperature and Humidity of Atmospheric Infrared Sounder (AIRS) v6 Profiles Using Radiosonde Data in the Lee of the Tibetan Plateau”, Atmosphere, Vol.10, p.394, 2019. doi:10.3390/atmos10070394
[78] F.M. Göttsche, F.S. Olesen, A. Bork-Unkelbach, “Validation of Land Surface Temperature Derived from MSG/SEVIRI with In Situ Measurements at Gobabeb, Namibia”, Int. J. Remote Sens., Vol.34, pp.3069–3083, 2013.
[79] F.M. Göttsche, F. Olesen, I. Trigo, A. Bork-Unkelbach, M. Martin, “Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous In-situ Measurements in Africa”, Remote Sens., Vol.8, No.5, p.410, 2016.
[80] O. Orhan, S. Ekercin, F. Dadaser-Celik, “Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey”,The Scientific World Journal. Article ID 142939. (11 pages), 2014.
[81] R. Van de Kerchove, S. Lhermitte, S. Veraverbeke, R. Goossens, “Spatio-Temporal Variability in Remotely Sensed Land Surface Temperature, and its Relationship with Physiograhic Variables in the Russian Altay Mountains”, International Journal of Applied Earth Observation, Vol.20, pp.4– 19, 2013.
[82] P.W. Thorne, M.G. Donat, H.J.R. Dunn, C.N. Williams, L.V. Alexander, “Reassessing Changes in Diurnal Temperature Range: Intercomparison and Evaluation of Existing Global Data Set Estimates”, J. Geophys. Res. Atmos., Vol.121, pp.5138–5158, 2016.
[83] L. Hu, Y. Sun, G. Fu, P. Collins, “Improved Estimates of Monthly Land Surface Temperature from MODIS using a Diurnal Temperature Cycle (DTC) Model”, ISPRS J. Photogramm. Remote Sens., Vol.168, pp.131– 140, 2020.
[84] T.U. Omali, “Ecological Evaluation of Urban Heat Island Impacts in Abuja Municipal Area of FCT Abuja, Nigeria”, World Academics Journal of Engineering Sciences, Vol.7, No.1, pp.66– 72, 2020.
[85] C. Kuenzer, S. Dech, “Thermal Infrared Remote Sensing”, Remote Sensing and Digital Image Processing. Vol.10, pp.978– 994, 2013.
[86] A. Balewa, T. Korme, “Monitoring Land Surface Temperature in Bahir Dar City and its Surrounding using Landsat Images”, The Egyptian J. Remote Sens. Space Sci., Vol.23, pp.371–386, 2020.
[87] S.B. Duan, Z.L. Li, P. Leng, “A Framework for the Retrieval of All-Weather Land Surface Temperature at a High Spatial Resolution from Polar-Orbiting Thermal Infrared and Passive Microwave Data.” Remote Sensing of Environment, Vol.195, pp.107–117, 2017.
[88] C. Huang, S.B. Duan, X.G. Jiang, X.J. Han, P. Leng, M.F. Gao, Z.L. Li, “A Physically Based Algorithm for Retrieving Land Surface Temperature under Cloudy Conditions from AMSR2 Passive Microwave Measurements”, Int. J. Remote Sens., Vol.40, 1828–1843, 2019.
[89] H. Meyer, M. Katurji, F. Detsch, F. Morgan, T. Nauss, P. Roudier, P. Zawar-Reza, “AntAir: Satellite-Derived 1 km Daily Antarctic Air Temperatures since 2003”, Earth Syst Sci Data Discuss., pp.1–18, 2019.
[90] W. Zhu, A. L?, S. Jia, “Estimation of Daily Maximum and Minimum Air Temperature using MODIS Land Surface Temperature Products”, Remote Sens. Environ., Vol.130, pp.62–73, 2013.
[91] S.B. Duan, Z.L. Li, H. Wu, P. Leng, M.F. Gao, C.G. Wang, “Radiance-Based Validation of Land Surface Temperature Products Derived from Collection 6 MODIS Thermal Infrared Data.” International Journal of Applied Earth Observation and Geoinformation, Vol.70, pp.84–92, 2018.
[92] J.A. Sobrino, Y. Julien, “Trend Analysis of Global MODIS-Terra Vegetation Indices and Land Surface Temperature Between 2000 and 2011”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.6, pp.2139–2145, 2013.
[93] L. Hu, N.A. Brunsell, A.J. Monaghan, M. Barlage, O.V. Wilhelmi, “How Can We use MODIS Land Surface Temperature to Validate Long-Term Urban Model Simulations?”, J. Geophys. Res. Atmos., Vol.119, pp.3185–3201, 2014.
[94] C.L. Zhou, K.C. Wang, “Land Surface Temperature Over Global Deserts: Means, Variability, and Trends”, Journal of Geophysical Research: Atmospheres, Vol.121, pp.344–357, 2016.
[95] J. Liu, D. Fiifi, T. Hagan, Y. Liu, “Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land-Based Analysis”, Remote Sens., Vol.13, p.44, 2021. Available from: https://doi.org/10.3390/rs13010044.
[96] S.M. Jaber, M.M. Abu-Allaban, “MODIS-Based Land Surface Temperature for Climate Variability and Change Research: the Tale of a Typical Semi-Arid to an Arid Environment”, Euro. J. Remote Sens., Vol.53, No.1, pp.81–90, 2020.
[97] X. Lian, Z.Z. Zeng, Y.T. Yao, S.S. Peng, K.C. Wang, S.L. Piao, “Spatiotemporal Variations in the Difference Between Satellite-Observed Daily Maximum Land Surface Temperature and Station-Based Daily Maximum Near-Surface Air Temperature”, Journal of Geophysical Research: Atmospheres, Vol.122, pp.2254–2268, 2017.
[98] E. Good, “Daily Minimum and Maximum Surface Air Temperatures from Geostationary Satellite Data. J. Geophys. Res. Atmos., Vol.120, No.6, pp.2306–2324, 2015.
[99] Y. Chen, H. Sun, J. Li, “Estimating Daily Maximum Air Temperature with MODIS Data and a Daytime Temperature Variation Model in Beijing Urban Area”, Remote Sens Lett., Vol.7, No.9, pp.865–874, 2016.
[100]T.N. Phan, M. Kappas, K.T. Nguyen, T.P. Tran, Q.V. Tran, A.R. Emam, “Evaluation of MODIS land surface temperature products for daily air surface temperature estimation in northwest Vietnam”, Int J Remote Sens., Vol.40, No.14, pp.5544–5562, 2019.
[101]Bentamy, A., Piolle, J.F., A Grouazel, R Danielson, S Gulev, et al., "Review and Assessment of Latent and Sensible Heat Flux Accuracy over the Global Oceans”, Remote Sens. Environ., Vol.201, pp.196–218, 2017.
[102]F. Pastor, J.A. Valiente, S.A. Khodayar, “Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature”, Remote Sens., Vol.12, pp.2687–2703, 2020.
[103]P.J. Minnett, A. Alvera-Azc´arate, T.M. Chin, G.K. Corlett, C.L. Gentemann, I. Karagali, …, J. Vazquez-Cuervo, “Half a century of satellite remote sensing of sea-surface temperature”, Remote Sens. Environ., Vol.233, 111366, 2019.
[104]I. Gladkova, A. Ignatov, F. Shahriar, Y. Kihai, D. Hillger, B. Petrenko, “Improved VIIRS and MODIS SST imagery”, Remote Sens., Vol.8, No.1, p.79, 2016.
[105] T.M. Chin, J. Vazquez-Cuervo, E.M. Armstrong, “A Multi-Scale Highresolution Analysis of Global Sea Surface Temperature”, Remote Sens. Environ., Vol.200, pp.154–169, 2017.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation