Full Paper View Go Back

Theoretical Study of Zero Field Splitting Parameters of Mn2+ doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II) Crystal at Orthorhombic Symmetry Site

Ram Kripal1

Section:Research Paper, Product Type: Journal-Paper
Vol.10 , Issue.4 , pp.23-28, Aug-2022


Online published on Aug 31, 2022


Copyright © Ram Kripal . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Ram Kripal , “Theoretical Study of Zero Field Splitting Parameters of Mn2+ doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II) Crystal at Orthorhombic Symmetry Site,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.4, pp.23-28, 2022.

MLA Style Citation: Ram Kripal "Theoretical Study of Zero Field Splitting Parameters of Mn2+ doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II) Crystal at Orthorhombic Symmetry Site." International Journal of Scientific Research in Physics and Applied Sciences 10.4 (2022): 23-28.

APA Style Citation: Ram Kripal , (2022). Theoretical Study of Zero Field Splitting Parameters of Mn2+ doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II) Crystal at Orthorhombic Symmetry Site. International Journal of Scientific Research in Physics and Applied Sciences, 10(4), 23-28.

BibTex Style Citation:
@article{Kripal_2022,
author = {Ram Kripal },
title = {Theoretical Study of Zero Field Splitting Parameters of Mn2+ doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II) Crystal at Orthorhombic Symmetry Site},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {8 2022},
volume = {10},
Issue = {4},
month = {8},
year = {2022},
issn = {2347-2693},
pages = {23-28},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2890},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=2890
TI - Theoretical Study of Zero Field Splitting Parameters of Mn2+ doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II) Crystal at Orthorhombic Symmetry Site
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - Ram Kripal
PY - 2022
DA - 2022/08/31
PB - IJCSE, Indore, INDIA
SP - 23-28
IS - 4
VL - 10
SN - 2347-2693
ER -

217 Views    195 Downloads    52 Downloads
  
  

Abstract :
The crystal field parameters (CFPs) of Mn2+ doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II) (ACD) single crystal are determined using superposition model (SPM). The zero field splitting parameters (ZFSPs) D and E are then found with the help of perturbation and microscopic spin Hamiltonian (SH) theory. The evaluated D and E show reasonable agreement with the experimental values from electron paramagnetic resonance. The results indicate that the Mn2+ ion enters the lattice substitutionally at Cd2+ site in ACD crystal. The procedure used here may be applied for the modeling of other ion-host systems.

Key-Words / Index Term :
A. Inorganic compounds; A. Single Crystal; C. Crystal structure and symmetry; D. Crystal and ligand fields; D. Optical properties; E. Electron paramagnetic resonance.

References :
[1] V.S Xavier Anthonisamy, D. Pathinettam Padiyan, R. Murugesan, “Single-crystal EPR studies on Ni(II)- and Mn(II)-doped hexakis(pyrazole) complexes of Zn(II) and Cd(II): a trigonally distorted cubic environment”, Mol. Phys., Vol. 94, Issue 2, pp. 275-281, 1998.
[2] A. Milton Franklin Benial, V. Ramakrishnan, R. Murugesan, “Single crystal electron paramagnetic resonance study of Mn(II) doped Zn(C5H5NO)6(BF4)2: probe into site symmetry”, Spectrochim. Acta. Part A, Vol. 55, Issue 13, pp. 2573-2577, 1999.
[3] Ch. Linga Raju, N.O. Gopal , K.V. Narasimhulu, J. Lakshmana Rao, B.C Venkata Reddy, “EPR, optical and infrared absorption studies of Mn2+ ions doped in zinc malate trihydrate single crystal”, Spectrochim. Acta. Part A, Vol. 61, Issue 9, pp. 2181-2187, 2005.
[4] R. Kripal, Vishal Mishra, “ESR and optical study of Mn2+ doped potassium hydrogen sulphate”, Solid State Commun., Vol. 133, Issue 1, pp. 23-28, 2005.
[5] A. Ozarowski, B. R. McGarvey, “EPR study of manganese(II) and copper(II) in single crystals of the spin-crossover complex hexakis(1-propyltetrazole)iron(2+) tetrafluoroborate(1-)”, Inorg.Chem., Vol. 28, Issue 6, pp. 2262-2266, 1989.
[6] V. S. Xavier Anthonisamy, M. Velayutham, R. Murugesan, “Spin-lattice relaxation of Co(II) in hexaaquocobalt(II) picrylsulphonate tetrahydrate: An estimate from EPR line width of the dopant, Mn(II)”, Physica B, Vol. 262, Issues 1-2, pp. 13-19, 1999.
[7] R. Murugesn, A. Thamaraichelvan, A. Milton Franklin, V.Ramakirshnan, “Host spin-lattice relaxation narrowing and the electron paramagnetic resonance of Mn(II) in single crystals of hexakis(pyridine N-oxide)cobalt(II) complexes”, Mol. Phys., Vol. 79, Issue 3, pp. 663-672, 1993.
[8] V. Singh, R. P. S. Chakradhar, J. L. Rao, S. J. Dhoble, S. H. Kim , “Electron Paramagnetic Resonance and Photoluminescence Studies of LaMgAl11O19:Mn2+ Green Phosphors”, J. Electron. Mater., Vol. 43, Issue 11, pp. 4041–4047, 2014.
[9] V. Singh, G. Sivaramaiah, J.L. Rao, S.H. Kim, “Optical and EPR properties of BaAl12O19:Eu2+, Mn2+ phosphor prepared by facile solution combustion approach”, J. Lumin., Vol. 157, pp. 74–81, 2015.
[10] B. Jaya Raja, M. Rajesh Yadav, V. Pushpa Manjari, B. Babu, Ch. Rama Krishna, R.V.S.S.N. Ravikumar, “Synthesis and characterization of undoped and Mn(II)ions doped Li2CaAl4(PO4)4F4 nanophosphors”, J. Mol. Struct., Vol.1076, pp. 461–467, 2014.
[11] A. K. Gupta, R. Kripal, “EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method”, Spectrochim. Acta. Part A, Vol. 96, pp. 626–631, 2012.
[12] D. J. Newman, “On the g-shift of S-state ions”, J. Phys. C: Solid State Phys., Vol. 10, pp. L315-L318, 1977.
[13] M. I. Bradbury, D. J. Newman, “Ratios of crystal field parameters in rare earth salts”, Chem. Phys. Lett., Vol. 1, pp. 44-45, 1967.
[14] Y. Y. Yeung, “Local distortion and zero-field splittings of 3d5 ions in oxide crystals”, J. Phys. C: Solid State Phys., Vol. 21, pp. 2453-61, 1988.
[15] E. Siegel and K. A. M ller, „Local position of Fe3+ in ferroelectric BaTiO3”, Phys. Rev. B, Vol. 20, pp. 3587-95, 1979.
[16] M. G. Brik, C. N. Avram, N. M Avram, “Calculations of spin Hamiltonian parameters and analysis of trigonal distortions in LiSr(Al,Ga)F6:Cr3+ crystals”, Physica B, Vol. 384, pp. 78-81, 2006.
[17] M. L Du, M. G. Zhao, „The eighth-order perturbation formula for the EPR cubic zero-field splitting parameter of d5(6S) ion and its applications to MgO:Mn2+ and MnCl2.2H2O”, J. Phys. C: Solid State Phys., Vol. 18, pp. 3241-3248, 1985.
[18] W. L. Yu, “Cubic zero-field splitting of a 6S state ion,” Phys. Rev. B, Vol. 39, pp. 622-632, 1989.
[19]. T. H. Yeom, S. H. Choh, M. L. Du, “A theoretical investigation of the zero-field splitting parameters for an Mn2+ centre in a BiVO4 single crystal”, J. Phys.: Condens. Matter, Vol. 5, pp. 2017-2024, 1993.
[20] Z. Y. Yang, ”An investigation of the EPR zero-field splitting of Cr3+ ions at the tetragonal site and the Cd2+ vacancy in RbCdF3:Cr3+ crystals”, J. Phys.: Condens. Matter, Vol. 12, pp. 4091-4096, 2000.
[21] H. Headlam, M. A. Hitchman, H. Stratmeir, J. M. M. Smits, P. T. Beurskens, E.de Boer, G. Janssen, B. M. Gatehouse, G. B. Deacon, G. N. Ward, M. J. Riley, D. Wang, “Interpretation of the Temperature Dependence of the EPR Spectrum of Cu2+-Doped
(NH4)2 [Cd(NH3)2(CrO4)2] and Crystal Structures of the High- and Low-Temperature Forms of the Host Lattice”, Inorg. Chem., Vol. 34, pp. 5516-5523, 1995.
[22] K. Vijayaraj, A. Jawahar, R. Anantharam, M. Kumara Dhas, “Single Crystal Q-Band EPR Studies of Mn (II) Doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II)”, IOSR J. Appl. Phys.(IOSR-JAP), Vol. 9, pp. 64-70, 2017.
[23] W. L. Yu, M.G. Zhao, ”Spin-Hamiltonian parameters of 6S state ions”, Phys. Rev. B, Vol. 37, pp. 9254-9267, 1988.
[24] A. Abragam, B. Bleaney, EPR of Transition Ions, Clarendon Press, Oxford, UK, 1970.
[25] C. Rudowicz, ”Concept of spin Hamiltonian, forms of zero field splitting and electronic Zeeman Hamiltonians and relations between parameters used in EPR. A critical review”, Magn. Reson. Rev., Vol. 13, pp. 1-89, 1987.
[26] C. Rudowicz, H. W. F. Sung, “Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?”, Physica B, Vol. 300, pp. 1- 26, 2001.
[27] C. J. Radnell, J. R. Pilbrow, S. Subramanian, M. T. Rogers, ‘Electron paramagnetic resonance of Fe3+ ions in (NH4)2SbF5”, J. Chem. Phys., Vol. 62, pp. 4948-4952, 1975.
[28] J. A. Weil, J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd Edition, Wiley, New York, USA, 2007.
[29] C. Rudowicz, S. B. Madhu, “Orthorhombic standardization of spin-Hamiltonian parameters for transition-metal centres in various crystals”, J. Phys.: Condens. Matter, Vol. 11, pp. 273-288, 1999.
[30] C. Rudowicz and R. Bramley, “On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry”, J. Chem. Phys.. Vol. 83, pp. 5192-5197, 1985; R. Kripal, D. Yadav, C. Rudowicz and P. Gnutek, ‘Alternative zero-field splitting(ZFS) parameter sets and standardization for Mn2+ ions in various hosts exhibiting orthorhombic site symmetry”, J. Phys. Chem. Solids, Vol. 70, pp. 827-833, 2009.
[31] C. Rudowicz, Y. Y. Zhao, W. L. Yu, “Crystal field analysis for 3d4 and 3d6 ions with an orbital singlet ground state at orthorhombic and tetragonal symmetry sites”, J. Phys. Chem. Solids, Vol. 53, pp. 1227-1236, 1992.
[32] W. L. Yu, M. G. Zhao, “Zero-field splitting and the d–d transitions of Mn2+ on Ca(II) sites in Ca5(PO4)3F”, Phys. Stat. Sol. (b), Vol. 140, pp. 203-212, 1987.
[33] C. K. Jorgensen, Modern Aspects of Ligand Field Theory, North-Holland, Amsterdam, p 305, 1971.
[34] M. G. Zhao, M. L. Du, G. Y. Sen, “A ?-?-? correlation ligand-field model for the Ni2+-6X- cluster”, J. Phys. C: Solid State Phys., Vol. 20, pp. 5557-5572, 1987; Q. Wei, “Investigations of the Optical and EPR Spectra for Cr3+ Ions in Diammonium Hexaaqua Magnesium Sulphate Single Crystal”, Acta Phys. Polon. A,Vol.118, pp. 670-672, 2010.
[35] R. Kripal, H. Govind, S. K. Gupta, M. Arora, “EPR and optical absorption study of Mn2+-doped zinc ammonium phosphate hexahydrate single crystals”, Physica B, Vol. 392, pp. 92-98, 2007.
[36] D. J. NEWMAN, “THEORY OF LANTHANIDE CRYSTAL FIELDS”, ADV. PHYS., VOL. 20, PP. 197-256, 1971.
[37] Y. Y. Yeung, D. J. Newman, “Superposition-model analyses for the Cr3+ 4A2 ground state”, Phys. Rev. B, Vol. 34, pp. 2258-2265, 1986.
[38] D. J. Newman, D. C. Pryce, and W. A. Runciman, “Superposition model analysis of the near infrared spectrum of Fe (super 2+) in pyrope-almandine garnets”, Am. Miner., Vol. 63, pp. 1278-1281, 1978.
[39] G. Y. Shen, M. G. Zhao, “Analysis of the spectrum of Fe2+ in Fe-pyrope garnets”, Phys. Rev. B, Vol. 30, Issue 7, pp. 3691-3703, 1984.
[40] D. J. Newman and B. Ng, “The Superposition model of crystal fields”, Rep. Prog. Phys., Vol. 52, pp. 699-763, 1989.
[41] M. Andrut, M. Wildner, C. Rudowicz, Optical Absorption Spectroscopy in Geosciences, Part II: Quantitative Aspects of Crystal Fields, Spectroscopic Methods in Mineralogy (EMU Notes in Mineralogy, Vol. 6, Ed. A. Beran and E. Libowitzky, Eötvös University Press, Budapest, Chapter 4, pp.145-188, 2004.
[42] C. Rudowicz, “Transformation relations for the conventional Okq and normalised O`kq Stevens operator equivalents with k=1 to 6 and –k ? q ? k”, J. Phys. C: Solid State Phys., Vol. 18, pp. 1415-1430, 1985; “On the derivation of the superposition-model formulae using the transformation relations for the Stevens operators”, J. Phys. C: Solid State Phys., Vol. 20, pp. 6033- 6037, 1987.
[43] M. Karbowiak, C. Rudowicz, P. Gnutek, “Energy levels and crystal-field parameters for Pr3+ and Nd3+ ions in rare earth(RE) tellurium oxides RE2Te4O11 revisited – Ascent/descent in symmetry method applied for triclinic site symmetry”, Opt. Mater., Vol. 33, pp. 1147-1161, 2011; doi: 10.1016/j.optmat.2011.01.027.
[44] K. T. Han, J. Kim, ”A theoretical analysis of zero-field splitting of Mn2+in sodium nitrite,” J. Phys.: Condens. Matter, Vol. 8, Number 33, pp. 6759-6767, 1996.
[45] P. Gnutek, Z. Y. Yang, C. Rudowicz, ”Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+–OI2? defect center in KTaO3 crystal”, J. Phys.: Condens. Matter, Vol. 21, pp. 455402-455412, 2009.
[46] V. V. Laguta, M. D. Glinchuk, I. P. Bykov, J. Rosa, L. Jastrabik, M. Savinov, Z. Trybula, “Paramagnetic dipole centers in KTaO3: Electron-spin-resonance and dielectric spectroscopy study”, Phys. Rev. B, Vol. 61, Issue 6, pp. 3897-3904, 2000.
[47] C. Rudowicz, Y. Y. Zhou, „Microscopic study of Cr2+ ion in the quasi-2D mixed system Rb2MnxCr1?xCl4”, J. Magn. Magn. Mater., Vol. 111, Issues 1-2, pp. 153-163, 1992.
[48] M. Acikgöz, P. Gnutek, C. Rudowicz, “Modeling zero-field splitting parameters for dopant Mn2+ and Fe3+ ions in anatase TiO2 crystal using superposition model analysis”, Chem. Phys. Letts., Vol. 524, pp. 49-55, 2012.
[49] Y. Y. Yeung, C. Rudowicz, “Crystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sites”, J. Comput. Phys.,Vol. 109, pp. 150-152, 1993.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation