Full Paper View Go Back
Bulk Viscous String Cosmological Model with Constant Deceleration Parameter in Teleparallel Gravity
Kalpana Pawar1 , A.K. Dabre2
Section:Research Paper, Product Type: Journal-Paper
Vol.10 ,
Issue.6 , pp.8-16, Dec-2022
Online published on Dec 31, 2022
Copyright © Kalpana Pawar, A.K. Dabre . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Kalpana Pawar, A.K. Dabre, “Bulk Viscous String Cosmological Model with Constant Deceleration Parameter in Teleparallel Gravity,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.6, pp.8-16, 2022.
MLA Style Citation: Kalpana Pawar, A.K. Dabre "Bulk Viscous String Cosmological Model with Constant Deceleration Parameter in Teleparallel Gravity." International Journal of Scientific Research in Physics and Applied Sciences 10.6 (2022): 8-16.
APA Style Citation: Kalpana Pawar, A.K. Dabre, (2022). Bulk Viscous String Cosmological Model with Constant Deceleration Parameter in Teleparallel Gravity. International Journal of Scientific Research in Physics and Applied Sciences, 10(6), 8-16.
BibTex Style Citation:
@article{Pawar_2022,
author = {Kalpana Pawar, A.K. Dabre},
title = {Bulk Viscous String Cosmological Model with Constant Deceleration Parameter in Teleparallel Gravity},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {12 2022},
volume = {10},
Issue = {6},
month = {12},
year = {2022},
issn = {2347-2693},
pages = {8-16},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3002},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3002
TI - Bulk Viscous String Cosmological Model with Constant Deceleration Parameter in Teleparallel Gravity
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - Kalpana Pawar, A.K. Dabre
PY - 2022
DA - 2022/12/31
PB - IJCSE, Indore, INDIA
SP - 8-16
IS - 6
VL - 10
SN - 2347-2693
ER -
Abstract :
In this article, we have studied the Bianchi-type V cosmological models which are spatially homogeneous and anisotropic in presence of bulk viscous fluid coupled with one-dimensional cosmic string having the constant deceleration parameter. We have obtained the exact solutions of highly non-linear field equations considering linear gravity, the equation of state, and the spatial law of variation for Hubble’s parameter. Some physical and kinematical properties of the constructed models have been discussed and presented graphically and it is interesting to note that the resultant models are in good agreement with recent observations.
Key-Words / Index Term :
Bianchi-type V space-time, Bulk Viscous Fluid, Cosmic String, Teleparallel Gravity.
References :
[1] R. A. Knop et al., “New Constraints on ? M , ? ? , and w from an Independent Set of 11 High?Redshift Supernovae Observed with the Hubble Space Telescope,” Astrophys. J., vol. 598, no. 1, pp. 102–137, Nov. 2003.
[2] A. Clocchiatti et al., “ Hubble Space Telescope and Ground?based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications ,” Astrophys. J., vol. 642, no. 1, pp. 1–21, 2006.
[3] K. Krisciunas et al., “Hubble Space Telescope Observations of Nine High-Redshift Essence Supernovae,” Astron. J., vol. 130, no. 6, pp. 2453–2472, 2005.
[4] S. Perlmutter et al., “Measurements of ? and ? from 42 High?Redshift Supernovae,” Astrophys. J., vol. 517, no. 2, pp. 565–586, Jun. 1999.
[5] A. G. Riess et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J., vol. 116, no. 3, pp. 1009–1038, Sep. 1998.
[6] A. G. Riess et al., “Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope?: Evidence for Past Deceleration and Constraints on Dark Energy Evolution,” Astrophys. J., vol. 607, no. 2, pp. 665–687, Jun. 2004.
[7] B. P. Schmidt et al., “The High?Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae,” Astrophys. J., vol. 507, no. 1, pp. 46–63, Nov. 1998.
[8] S. Nobili et al., “Restframe I-band Hubble diagram for type la supernovae up to redshift z ? 0.5,” Astron. Astrophys., vol. 437, no. 3, pp. 789–804, 2005.
[9] R. Ferraro and F. Fiorini, “Modified teleparallel gravity: Inflation without an inflaton,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 75, no. 8, pp. 1–5, Apr. 2007.
[10] G. R. Bengochea and R. Ferraro, “Dark torsion as the cosmic speed-up,” Phys. Rev. D, vol. 79, no. 12, p. 124019, Jun. 2009.
[11] E. V. Linder, “Einstein’s other gravity and the acceleration of the Universe,” Phys. Rev. D, vol. 81, no. 12, p. 127301, Jun. 2010.
[12] S.-H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, “Cosmological perturbations in f(T) gravity,” Phys. Rev. D, vol. 83, no. 2, p. 023508, Jan. 2011.
[13] J. B. Dent, S. Dutta, and E. N. Saridakis, “f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis,” J. Cosmol. Astropart. Phys., vol. 2011, no. 01, pp. 009–009, Jan. 2011.
[14] R. Zheng and Q.-G. Huang, “Growth factor in f(T) gravity,” J. Cosmol. Astropart. Phys., vol. 2011, no. 03, pp. 002–002, Mar. 2011.
[15] K. Bamba, R. Myrzakulov, S. Nojiri, and S. D. Odintsov, “Reconstruction of f(T) gravity: Rip cosmology, finite-time future singularities, and thermodynamics,” Phys. Rev. D, vol. 85, no. 10, p. 104036, May 2012.
[16] M. Hamani Daouda, M. E. Rodrigues, and M. J. S. Houndjo, “Reconstruction of f(T) gravity according to holographic dark energy,” Eur. Phys. J. C, vol. 72, no. 2, p. 1893, Feb. 2012.
[17] W. El Hanafy and G. G. L. Nashed, “Reconstruction of f(T) -gravity in the absence of matter,” Astrophys. Space Sci., vol. 361, no. 6, 2016.
[18] Y.-F. Cai, M. Khurshudyan, and E. N. Saridakis, “ Model-independent Reconstruction of f ( T ) Gravity from Gaussian Processes ,” Astrophys. J., vol. 888, no. 2, p. 62, 2020.
[19] M. V. Santhi, Y. Sobhanbabu, and B. J. M. Rao, “Bianchi type V I h Bulk-Viscous String Cosmological Model in f(R) Gravity,” J. Phys. Conf. Ser., vol. 1344, no. 1, p. 012038, Oct. 2019.
[20] D. R. K. Reddy, S. Anitha, and S. Umadevi, “Kantowski-Sachs bulk viscous string cosmological model in f(R,T) gravity,” Eur. Phys. J. Plus, vol. 129, no. 5, p. 96, May 2014.
[21] E. A. Hegazy, “Bulk viscous Bianchi type I cosmological model in Lyra geometry and in the general theory of relativity,” Astrophys. Space Sci., vol. 365, no. 7, pp. 33–44, 2020.
[22] R. L. Naidu, D. R. K. Reddy, T. Ramprasad, and K. V. Ramana, “Bianchi type-V bulk viscous string cosmological model in f(R,T) gravity,” Astrophys. Space Sci., vol. 348, no. 1, pp. 247–252, Nov. 2013.
[23] R. L. Naidu, K. Dasu Naidu, K. Shobhan Babu, and D. R. K. Reddy, “A five dimensional Kaluza-Klein bulk viscous string cosmological model in Brans-Dicke scalar-tensor theory of gravitation,” Astrophys. Space Sci., vol. 347, no. 1, pp. 197–201, Sep. 2013.
[24] D. R. K. Reddy, R. L. Naidu, K. Dasu Naidu, and T. Ram Prasad, “Kaluza-Klein universe with cosmic strings and bulk viscosity in f(R,T) gravity,” Astrophys. Space Sci., vol. 346, no. 1, pp. 261–265, 2013.
[25] T. Vidyasagar, R. L. Naidu, R. Bhuvana Vijaya, and D. R. K. Reddy, “Bianchi type-VI0 bulk viscous string cosmological model in Brans-Dicke scalar-tensor theory of gravitation,” Eur. Phys. J. Plus, vol. 129, no. 2, p. 36, Feb. 2014.
[26] D. R. K. Reddy, R. L. Naidu, K. Dasu Naidu, and T. Ram Prasad, “LRS Bianchi type-II universe with cosmic strings and bulk viscosity in a modified theory of gravity,” Astrophys. Space Sci., vol. 346, no. 1, pp. 219–223, Jul. 2013.
[27] D. R. K. Reddy, R. L. Naidu, T. Ramprasd, and K. V. Ramana, “LRS Bianchi type-II bulk viscous cosmic string model in a scale covariant theory of gravitation,” Astrophys. Space Sci., vol. 348, no. 1, pp. 241–245, Nov. 2013.
[28] R. K. Mishra and H. Dua, “Bulk viscous string cosmological models in Saez-Ballester theory of gravity,” Astrophys. Space Sci., vol. 364, no. 11, p. 195, Nov. 2019.
[29] A. K. Sethi, B. Nayak, and R. Patra, “String Cosmological Models with Bulk Viscosity in Lyra Geometry,” J. Phys. Conf. Ser., vol. 1344, no. 1, p. 012001, Oct. 2019.
[30] M. R. Mollah and K. P. Singh, “Behaviour of viscous fluid in string cosmological models in the framework of Lyra geometry,” New Astron., vol. 88, p. 101611, Oct. 2021.
[31] S. R. Bhoyar, V. R. Chirde, and S. H. Shekh, “Accelerating Universe with Viscous Cosmic String in Quadratic Form of Teleparallel Gravity,” J. Sci. Res., vol. 11, no. 3, pp. 249–262, Sep. 2019.
[32] R. Bali and S. Dave, “Bianchi Type-III String Cosmological Model with Bulk Viscous Fluid in General Relativity,” Astrophys. Space Sci., vol. 282, no. 2, pp. 461–466, 2002.
[33] A. Dixit, R. Zia, and A. Pradhan, “Anisotropic bulk viscous string cosmological models of the Universe under a time-dependent deceleration parameter,” Pramana, vol. 94, no. 1, p. 25, Dec. 2020.
[34] P. K. Sahoo, A. Nath, and S. K. Sahu, “Bianchi Type-III String Cosmological Model with Bulk Viscous Fluid in Lyra Geometry,” Iran. J. Sci. Technol. Trans. A Sci., vol. 41, no. 1, pp. 243–248, Mar. 2017.
[35] M. Vijaya Santhi, V. U. M. Rao, and Y. Aditya, “Bianchi Type- I Bulk Viscous String Model in f(R) Gravity,” J. Dyn. Syst. Geom. Theor., vol. 17, no. 1, pp. 23–38, Jan. 2019.
[36] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, “Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution,” Phys. Rep., vol. 692, pp. 1–104, Jun. 2017.
[37] L. Freidel, R. G. Leigh, and D. Minic, “Quantum gravity, dynamical phase-space and string theory,” Int. J. Mod. Phys. D, vol. 23, no. 12, p. 1442006, Oct. 2014.
[38] B. Mishra, S. K. Tripathy, and P. P. Ray, “Bianchi-V string cosmological model with dark energy anisotropy,” Astrophys. Space Sci., vol. 363, no. 5, p. 86, May 2018.
[39] T. Vinutha, V. U. M. Rao, G. Bekele, and K. S. Kavya, “Viscous string anisotropic cosmological model in scalar–tensor theory,” Indian J. Phys., vol. 95, no. 9, pp. 1933–1940, Sep. 2021.
[40] F. Darabi, M. Golmohammadi, and A. Rezaei-Aghdam, “FRW string cosmological solutions via Hojman symmetry,” Int. J. Geom. Methods Mod. Phys., vol. 17, no. 12, p. 2050175, Oct. 2020.
[41] V. R. Chirde, S. P. Hatkar, and S. D. Katore, “Bianchi type I cosmological model with perfect fluid and string in f(T) theory of gravitation,” Int. J. Mod. Phys. D, vol. 29, no. 08, p. 2050054, Jun. 2020.
[42] D. D. Pawar, G. G. Bhuttampalle, and P. K. Agrawal, “Kaluza–Klein string cosmological model in f(R, T) theory of gravity,” New Astron., vol. 65, pp. 1–6, Nov. 2018.
[43] R. Zia, D. C. Maurya, and A. Pradhan, “Transit dark energy string cosmological models with perfect fluid in F (R, T) -gravity,” Int. J. Geom. Methods Mod. Phys., vol. 15, no. 10, p. 1850168, Oct. 2018.
[44] M. Sharif and Q. Ama-Tul-Mughani, “Gravitational decoupled solutions of axial string cosmology,” Mod. Phys. Lett. A, vol. 35, no. 12, p. 2050091, Apr. 2020.
[45] A. Kumar Yadav, “Bianchi-V string cosmology with power law expansion in f (R, T) gravity,” Eur. Phys. J. Plus, vol. 129, no. 9, 2014.
[46] T. Vinutha, V. U. M. Rao, and M. Mengesha, “Anisotropic dark energy cosmological model with cosmic strings,” Can. J. Phys., vol. 99, no. 3, pp. 168–175, Mar. 2021.
[47] A. R. P. Moreira, J. E. G. Silva, D. F. S. Veras, and C. A. S. Almeida, “Thick string-like braneworlds in f(T) gravity,” Int. J. Mod. Phys. D, vol. 30, no. 07, p. 2150047, May 2021.
[48] R. Consiglio, O. Sazhina, G. Longo, M. Sazhin, and F. Pezzella, “On the Number of Cosmic Strings,” Dec. 2011.
[49] P. S. Letelier, “String cosmologies,” Phys. Rev. D, vol. 28, no. 10, pp. 2414–2419, Nov. 1983.
[50] H. Bernardo, R. Brandenberger, and G. Franzmann, “String cosmology backgrounds from classical string geometry,” Phys. Rev. D, vol. 103, no. 4, p. 43540, 2021.
[51] P. Berglund, T. Hübsch, and D. Mini?, “Dark energy and string theory,” Phys. Lett. B, vol. 798, p. 134950, Nov. 2019.
[52] P. S. Letelier, “Fluids of strings in general relativity,” Nuovo Cim. B, vol. 63, no. 2, pp. 519–528, 1981.
[53] P. R. Dhongale, M. S. Borkar, S. S. Charjan, “Bianchi Type I Bulk Viscous Fluid String Dust Magnetized Cosmological Model with ?-Term in Bimetric Theory of Gravitation,” Int. J. Sci. Res. Math. Stat. Sci., vol. 6, no. 3, pp. 35–40, 2019.
[54] S. D. Katore, S. P. Hatkar, and S. V. Gore, “Cosmology of string bulk viscosity in f(G) theory of gravitation,” Int. J. Geom. Methods Mod. Phys., vol. 15, no. 07, p. 1850116, Jul. 2018.
[55] K. Jain, D. Chhajed, and A. Tyagi, “Magnetized LRS Bianchi Type-I Massive String Cosmological Model for Perfect Fluid Distribution with Cosmological Term ?,” Int. J. Sci. Res. Phys. Appl. Sci., vol. 7, no. 3, pp. 167–172, Jun. 2019.
[56] B. P. Brahma and M. Dewri, “Bulk Viscous Bianchi Type-V Cosmological Model in f(R, T) Theory of Gravity,” Front. Astron. Sp. Sci., vol. 9, Feb. 2022,.
[57] D. R. K. Reddy, C. Purnachandra Rao, T. Vidyasagar, and R. Bhuvana Vijaya, “Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation,” Adv. High Energy Phys., vol. 2013, pp. 1–5, 2013.
[58] M. S. Berman, “A special law of variation for Hubble’s parameter,” Nuovo Cim. B Ser. 11, vol. 74, no. 2, pp. 182–186, Apr. 1983.
[59] P. S. Letelier, “Clouds of strings in general relativity,” Phys. Rev. D, vol. 20, no. 6, pp. 1294–1302, Sep. 1979.
[60] J. Baro and K. P. Singh, “Higher Dimensional Bianchi Type-Iii String Universe With Bulk Viscous Fluid And Constant Deceleration Parameter,” Adv. Math. Sci. J., vol. 9, no. 10, pp. 8779–8787, Oct. 2020.
[61] K. D. Krori, T. Chaudhury, C. R. Mahanta, and A. Mazumdar, “Some exact solutions in string cosmology,” Gen. Relativ. Gravit., vol. 22, no. 2, pp. 123–130, Feb. 1990.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.