Full Paper View Go Back

A Short Review of Magnetocaloric Effect in Ni-Mn-Ga Heusler Alloy System

D. Pal1

  1. Department of Physics, Gokhale Memorial Girls’ College, Kolkata-700020, India.

Section:Review Paper, Product Type: Journal-Paper
Vol.11 , Issue.3 , pp.13-20, Jun-2023


Online published on Jun 30, 2023


Copyright © D. Pal . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: D. Pal, “A Short Review of Magnetocaloric Effect in Ni-Mn-Ga Heusler Alloy System,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.3, pp.13-20, 2023.

MLA Style Citation: D. Pal "A Short Review of Magnetocaloric Effect in Ni-Mn-Ga Heusler Alloy System." International Journal of Scientific Research in Physics and Applied Sciences 11.3 (2023): 13-20.

APA Style Citation: D. Pal, (2023). A Short Review of Magnetocaloric Effect in Ni-Mn-Ga Heusler Alloy System. International Journal of Scientific Research in Physics and Applied Sciences, 11(3), 13-20.

BibTex Style Citation:
@article{Pal_2023,
author = {D. Pal},
title = {A Short Review of Magnetocaloric Effect in Ni-Mn-Ga Heusler Alloy System},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {6 2023},
volume = {11},
Issue = {3},
month = {6},
year = {2023},
issn = {2347-2693},
pages = {13-20},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3146},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3146
TI - A Short Review of Magnetocaloric Effect in Ni-Mn-Ga Heusler Alloy System
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - D. Pal
PY - 2023
DA - 2023/06/30
PB - IJCSE, Indore, INDIA
SP - 13-20
IS - 3
VL - 11
SN - 2347-2693
ER -

251 Views    198 Downloads    34 Downloads
  
  

Abstract :
Magnetic refrigeration that utilizes the magnetocaloric effect (MCE) of a material is considered a promising substitute to the conventional gas-compression/expansion cooling technology owing to its advantages, such as environmental friendliness, cost-effectiveness, etc. For the potential application of this technology, low-cost and highly efficient magnetocaloric materials are in great need as magnetic refrigerants. The geometry of the magnetocaloric materials also becomes important for cooling in (nano)macro devices and it demands a very small size. In search of prospective magnetocaloric material Ni-Mn-based ferromagnetic Heulser alloys are of great interest for their potential to achieve large/giant magnetic entropy change at magneto-structural transition. This review article comprises an overview of the magnetocaloric effect in the ferromagnetic Ni-Mn-Ga Heusler alloy system. MCE in these alloys in various low/reduced dimensions such as ribbons, microwires and thin films are also outlined. Recent development in this field along with previous works have been reviewed in a systematic manner. The present difficulties/limitations and remaining challenges in this field have also been discussed in this article.

Key-Words / Index Term :
Heusler alloy, Martensitic transition, Magnetic entropy, Magnetocaloric effect, Microwires, Ribbons, Thin films.

References :
[1] H. Y. Nguyen, X. H. Kieu, H. N. Nguyen, T. T. Pham, T. D. Thanh, Q. N. Le and H. D. Nguyen, “Structure and magnetic properties of Ni–Mn–Ga shape memory alloys,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 13, p. 015014, 2022.
[2] D. Pal and K. Mandal, “Magnetocaloric effect and magnetoresistance of Ni–Fe–Ga alloys,” Journal of Physics D: Applied Physics, Vol. 43, p. 455002, 2010.
[3] L. Manosaa, A. Planes, M. Acet, E. Duman, E. F. Wassermann, “Magnetic shape memory in Ni–Mn–Ga and Ni–Mn–Al,” Journal of Magnetism and Magnetic Materials, Vol. 272–276, pp. 2090–2092, 2004.
[4] K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, and K. Isshida, “Promising ferromagnetic Ni-Co-Al shape memory alloy system,” Applied Physics Letters, Vol. 79, pp. 3290-3292, 2001.
[5] D. Pal, A. Ghosh, and K. Mandal, “Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni52Mn34Sn14 Heusler alloy,” Journal of Magnetism and Magnetic Materials, Vol. 360, pp. 183-187, 2014.
[6] X.-Z. Li, W.-Y. Zhang, S. Valloppilly, and D. J. Sellmyer, “New Heusler compounds in Ni-Mn-In and Ni-Mn-Sn alloys,” Scientific Reports, Vol. 9, No. 7762, 2019.
[7] V. A. L`vov, A. Kosogor, J. M. Barandiaran, V. A. Chernenko, “Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior,” Journal of Applied Physics, Vol. 119, p. 013902, 2016.
[8] K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Kokorin, “Large magnetic?field?induced strains in Ni2MnGa single crystals,” Applied Physics Letters, Vol. 69, pp. 1966-1968, 1996.
[9] G. H. Wu, C. H. Yu, L. Q. Meng, J. L. Chen, F. M. Yang, S. R. Qi, W. S. Zhan, Z. Wang, Y. F. Zheng, and L. C. Zhao, “Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition,” Applied Physics Letter, Vol. 75, pp. 2990-2992, 1999.
[10] F. X. Hu, B. G. Shen, J. R. Sun, and G. H. Wu, “Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal,” Physical Review B, Vol. 64, p. 132412, 2001.
[11] M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel, “Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals,” Physical Review B, Vol. 72, p. 094435, 2005.
[12] D. Pal, K. Mandal, and O. Gutfleisch, “Large negative magnetoresistance in nickel-rich Ni–Mn–Ga Heusler alloys,” Journal of Applied Physics, Vol. 107, p. 09B103, 2010.
[13] D. Pal, “Magnetocaloric and Magneto-transport Properties in Polycrystalline Ni56Mn20Ga24 Heusler Alloy,” Journal of Scientific Research, Vol. 15, No. 2, pp. 361-370, 2023.
[14] V. O. Golub, V. A. Chernenko, A. Apolinario, I. R. Aseguinolaza, J. P. Araujo, O. Salyuk, J. M. Barandiaran and G. N. Kakazei, “Negative Magnetoresistance in Nanotwinned NiMnGa Epitaxial Films,” Scientific Reports, Vol. 8, No. 15730, 2018.
[15] M. Qian, X. Zhang, L. Wei, P. Martin, J. Sun, L. Geng, T. B. Scott, and Hua-Xin Peng, “Tunable Magnetocaloric Effect in Ni-Mn-Ga Microwires,” Scientific Reports, Vol. 8, No. 16574, 2018.
[16] Y.S. Koshkidko, E.T. Dilmieva, A. P. Kamantsev, J. Cwik, K. Rogacki, A. V. Mashirov, V. V. Khovaylo, C. S. Mejia, M. A. Zagrebin, V. V. Sokolovskiy, V. D. Buchelnikov, P. Ari-Gur, P. Bhale, V. G. Shavrov, V. V. Koledov, “Magnetocaloric effect and magnetic phase diagram of Ni-Mn-Ga Heusler alloy in steady and pulsed magnetic fields,” Journal of Alloys and Compounds, Vol. 904, p. 164051, 2022.
[17] G. Porcari, F. Cugini, S. Fabbrici, C. Pernechele, F. Albertini, M. Buzzi, M. Mangia, and M. Solzi, “Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: The case of Ni-Co-Mn-Ga Heusler alloys,” Physical Review B, Vol. 86, p. 104432, 2012.
[18] J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nature Materials, Vol. 11, pp. 620-626, 2012.
[19] Y. H. Qu, D. Y. Cong, X. M. Sun, Z. H. Nie, W. Y. Gui, R. G. Li, Y. Ren, Y. D. Wang, “Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys,” Acta Materialia, Vol. 134, pp. 236–248, 2017.
[20] D. Y. Cong, L. Huang, V. Hardy, D. Bourgault, X. M. Sun, Z. H. Nie, M. G. Wang, Y. Ren, P. Entel, Y. D. Wang, “Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy,” Acta Materialia, Vol. 146, pp. 142–151, 2018.
[21] Y. Qu, A. Gràcia-Condal, L. Mañosa, A. Planes, D. Cong, Z. Nie, Y. Ren, Y. Wang, “Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy,” Acta Materialia, Vol. 177, pp. 46-55, 2019.
[22] C. Liu, Z. Li, Y. Zhang, Y. Liu, J. Sun, Y. Huang, B. Kang, K. Xu, D. Deng, C. Jing, “Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn48?xCuxNi42Sn10 Heusler alloys,” Physica B: Condensed Matter, Vol. 508, pp. 118–123, 2017.
[23] Y. Feng, J.H. Sui, L. Chen, W. Cai, “Martensitic transformation behaviors and magnetic properties of Ni–Mn–Ga rapidly quenched ribbons,” Materials Letters, Vol. 63, pp. 965-968, 2009.
[24] P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modelling the phase diagram of magnetic shape memory Heusler alloys,” Journal of Physics D: Applied Physics, Vol. 39, p. 865, 2006.
[25] V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Savrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, “Phase transitions in Ni2+xMn1?xGa with a high Ni excess,” Physical Review B, Vol. 72, p. 224408, 2005.
[26] A. Planes, L.Mañosa, A. Saxena, Magnetism and Structure in Functional Materials, Springer-Verlag, berlin Heidelberg, 2005, ISBN: 978-3-540-31631-2
[27] S. Stadler, M. Khan, J. Mitchell, N. Ali, A. M. Gomes, I. Dubenko, A. Y. Takeuchi, A. P. Guimarães, “Magnetocaloric properties of Ni2Mn1?xCuxGa,” Applied Physics Letters, Vol. 88, p. 192511, 2006.
[28] J. Pons, R. Santamarta, V. A. Chernenko, E. Cesari, “Structure of the layered martensitic phases of Ni–Mn–Ga alloys,” Materials Science and Engineering: A, Vol. 438–440, pp. 931-934, 2006.
[29] J. Pons, V. A. Chernenko, R. Santamarta and E. Cesari, “Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys,” Acta Materialia, Vol. 48, pp. 3027-3038, 2000.
[30] N. Hassan, I. A. Shah, J. Liu, G. Xu, Y. Gong, X. Miao, F. Xu, “Magnetostructural Coupling and Giant Magnetocaloric Effect in Off-Stoichiometric MnCoGe Alloys,” Journal of Superconductivity and Novel Magnetism, Vol. 31, pp. 3809–3815, 2018.
[31] Z. Li, Y. Zhang, C. F. Sanchez-Valdes, J. L. Sanchez Llamazares, C. Esling, X. Zhao, and L. Zuo, “Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation,” Applied Physics Letters, Vol. 104, p. 044101, 2014.
[32] R. Zuberek, O. M. Chumak, A. Nabia?ek, M. Chojnacki, I. Radelytskyi, H. Szymczak, “Magnetocaloric effect and magnetoelastic properties of NiMnGa and NiMnSn Heusler alloy thin films,” Journal of Alloys and Compounds, Vol. 748, pp. 1-5, 2018.
[33] D. Pal, “Conventional and Inverse Magnetocaloric Effect in Ni-Rich Ni-Mn-Ga and Ni-Mn-Sn Heusler Alloy: A Comparison”, Journal of Scientific Research, Vol. 12, No. 3, pp. 303–310, 2020.
[34] H. Sun, C. Jing, H. Zeng, Y. Su, S. Yang, Y. Zhang, et. al. “Martensitic Transformation, Magnetic and Mechanical Characteristics in Unidirectional Ni–Mn–Sn Heusler Alloy,” Magnetochemistry, Vol. 8, p. 136, 2022.
[35] D. Pal and K. Mandal, “Magnetic and Magneto-Transport Properties of Nickel-Rich Ni–Mn–Ga Heusler Alloys,” Japanese Journal of Applied Physics, Vol. 49, p. 073002, 2010.
[36] A. Planes, L. Manosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” Journal of Physics: Condensed Matter, Vol. 21, p. 233201, 2009.
[37] J. Marcos, L. Manosa, A. Planes, F. Casanova, X. Batlle, and A. Labarta, “Multiscale origin of the magnetocaloric effect in Ni-Mn-Ga shape-memory alloys,” Physical Review B, Vol. 68, p. 094401, 2003.
[38] F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra, and L. Righi, “Composition and temperature dependence of the magnetocrystalline anisotropy in Ni2+xMn1+yGa1+z?(x+y+z=0) Heusler alloys,” Applied Physics Letters, Vol. 81, pp. 4032–4034, 2002.
[39] A. Planes, L. Manosa, X. Moya, J. Marcos, M. Acet, T. Krenke, S. Aksoy, and E. F. Wassermann, “Magnetocaloric and Shape-Memory Properties in Magnetic Heusler Alloys,” Advanced Materials Research, Vol. 52, pp. 221-228, 2008.
[40] V. V. Khovaylo, K. P. Skokov, S. V. Taskaev, D. Y. Karpenkov, E. T. Dilmieva, V. V. Koledov et al. “Magnetocaloric properties of Ni2+xMn1?xGa with coupled magnetostructural phase transition,” Journal of Applied Physics, Vol. 127, p. 173903, 2020.
[41] C. Jiang, Y. Muhammad, L. Deng, W. Wu, and H. Xu, “Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys,” Acta Materialia, Vol. 52, pp. 2779-2785, 2004.
[42] N. Lanska, O. Söderberg, A. Sozinov, Y. Ge, K. Ullakko, and V. K. Lindroos, “Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys,” Journal of Applied Physics, Vol. 95, pp. 8074-8078, 2004.
[43] J. M. MacLaren, “Role of alloying on the shape memory effect in Ni2MnGa,” Journal of Applied Physics, Vol. 91, pp. 7801-7803, 2002.
[44] X. Zhou, W. Li, H. P. Kunkel, and G. Williams, “A criterion for enhancing the giant magnetocaloric effect: (Ni–Mn–Ga)—a promising new system for magnetic refrigeration,” Journal of Physics: Condensed Matter, Vol. 16, pp. L39–L44, 2004.
[45] A. Aliev, A. Batdalov, S. Bosko, V. Buchelnikov, I. Dikshtein, V. Khovailo, V. Koledov, R. Levitin, V. Shavrov, and T. Takagi, “Magnetocaloric effect and magnetization in a Ni–Mn–Ga Heusler alloy in the vicinity of magnetostructural transition,” Journal of Magnetism and Magnetic Materials, Vol. 272–276, pp. 2040-2042, 2004.
[46] J. Kamarád, F. Albertini, Z. Arnold, F. Casoli, L. Pareti, and A. Paoluzi, “Effect of hydrostatic pressure on magnetization of Ni2+xMn1?xGa alloys,” Journal of Magnetism and Magnetic Materials, Vol. 290–291, pp. 669-672, 2005.
[47] V. V. Khovailo, V. Novosad, T. Takagi, D. A. Filippov, R. Z. Levitin, and A. N. Vasilev, “Magnetic properties and magnetostructural phase transitions in Ni2+xMn1?xGa shape memory alloys,” Physical Review B, Vol. 70, p. 174413, 2004.
[48] Z. Li, K. Xu, Y. Zhang, C. Tao, D. Zheng and C. Jing, “Two successive magneto-structural transformations and their relation to enhanced magnetocaloric effect for Ni55.8Mn18.1Ga26.1 Heusler alloy,” Scientific Reports, Vol. 5, No. 15143, 2015.
[49] K. Mandal, D. Pal, N. Scheerbaum, J. Lyubina, and O. Gutfleisch, “Effect of pressure on the magnetocaloric properties of nickel-rich Ni–Mn–Ga Heusler alloys,” Journal of Applied Physics, Vol. 105, p. 073509, 2009.
[50] D. Soto, F. A. Hernández, H. Flores-Zúñiga, X. Moya, L. Mañosa, A. Planes, S. Aksoy, and M. Acet, “Phase diagram of Fe-doped Ni-Mn-Ga ferromagnetic shape-memory alloys,” Physical Review B, Vol. 77, p. 184103, 2008.
[51] G. Porcari, F. Cugini, S. Fabbrici, C. Pernechele, F. Albertini, M. Buzzi, M. Mangia, and M. Solzi, “Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: The case of Ni-Co-Mn-Ga Heusler alloys,” Physical Review B, Vol. 86, p. 104432, 2012.
[52] B. Emre, S. Yuce, E. S. Taulats, A. Planes, S. Fabbrici, F. Albertini, and L. Manosa, “Large reversible entropy change at the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys,” Journal of Applied Physics, Vol. 113, p. 213905, 2013.
[53] S. Singh, S. W. D’Souza, K. Mukherjee, P. Kushwaha, S. R. Barman, S. Agarwal, P. K. Mukhopadhyay, A. Chakrabarti, E. V. Sampathkumaran, “Magnetic properties and magnetocaloric effect in Pt doped Ni-Mn-Ga,” Applied Physics Letters, Vol. 104, p. 231909, 2014.
[54] S. K. Sarkar, Saritra, P. D. Babu, A. Biswas, V. Siruguri, M. Krishnan, “Giant magnetocaloric effect from reverse martensitic transformation in Ni–Mn–Ga–Cu ferromagnetic shape memory alloys,” Journal of Alloys and Compound, Vol. 670, pp. 281-288, 2016.
[55] B. D. White, R. I. Barabash, O. M. Barabash, I. Jeon, and M. B. Maple, “Magnetocaloric effect near room temperature in quintenary and sextenary Heusler alloys,” Journal of Applied Physics, Vol. 126, p. 165101, 2019.
[56] C. Seguí, J. T. Serra, E. Cesari, and P. Lázpita, “Optimizing the Caloric Properties of Cu-Doped Ni–Mn–Ga Alloys,” Materials, Vol. 13, Issue 2, p. 419, 2020.
[57] A. A. Mendonça, L. Ghivelder, P. L. Bernardo, L. F. Cohen, A. M. Gomes, “Low hysteretic magnetostructural transformation in Cr-doped Ni-Mn-Ga Heusler alloy,” Journal of Alloys and Compounds, Vol. 938, p. 168444, 2023.
[58] S. Fabbrici, J. Kamarad, Z. Arnold, F. Casoli, A. Paoluzi, F. Bolzoni, R. Cabassi, M. Solzi, G. Porcari, C. Pernechele, F. Albertini, “From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys,” Acta Materialia, Vol. 59, pp. 412–419, 2011.
[59] M. Namvari, V. Chernenko, A. Saren, J. M. Porro, K. Ullakko, “Structure-property control of polycrystalline Ni-Mn-Ga by moderate Co-doping,” Journal of Alloys and Compounds, Vol. 944, p. 169184, 2023.
[60] J. Kamara´d, F. Albertini, Z. Arnold, F. Casoli, L. Pareti, A. Paoluzi, “Effect of hydrostatic pressure on magnetization of Ni2+xMn1?xGa alloys,” Journal of Magnetism and Magnetic Materials, Vol. 290–291, pp. 669–672, 2005.
[61] T. Yasudaa, T. Kanomataa, T. Saitoa, H. Yosidab, H. Nishiharac, R. Kainumad, K. Oikawad, K. Ishidad, K. U. Neumanne, K. R. A. Ziebeck, “Pressure effect on transformation temperatures of ferromagnetic shape memory alloy Ni50Mn36Sn14,” Journal of Magnetism and Magnetic Materials, Vol. 310, pp. 2770–2772, 2007.
[62] A. K. Nayak, K. G. Suresh, A. K. Nigam, A. A. Coelho, and S. Gama, “Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy,” Journal of Applied Physics, Vol. 106, p. 053901, 2009.
[63] S. Esakki Muthu, N. V. Rama Rao, M. Manivel Raja, S. Arumugam, K. Matsubayasi, and Y. Uwatoko, “Hydrostatic pressure effect on the martensitic transition, magnetic, and magnetocaloric properties in Ni50-xMn37+xSn13 Heusler alloys,” Journal of Applied Physics, Vol. 110, p. 083902, 2011.
[64] U. Devarajan, S. Esakki Muthu, S. Arumugam, S. Singh, and S. R. Barman, “Investigation of the influence of hydrostatic pressure on the magnetic and magnetocaloric properties of Ni2?XMn1+XGa (X?=?0, 0.15) Heusler alloys,” Journal of Applied Physics, Vol. 114, p. 053906, 2013.
[65] X. J. He, K. Xu, S. X. Wei, Y. L. Zhang, Z. Li, and C. Jing, “Barocaloric effect associated with magneto-structural transformation studied by an effectively indirect method for the Ni58.3Mn17.1Ga24.6 Heusler alloy,” Journal of Materials Science, Vol. 52, pp. 2915–2923, 2017.
[66] K. Mandal, P. Dutta, P. Dasgupta, S. Pramanick, S. Chatterjee, “Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy,” Journal of Physics D: Applied Physics, Vol. 51, p. 225004, 2018.
[67] W. Shi, F. Chen, J. Liu, H. Xuan, R. Zhang, Q. Zhang, Y. Jiang, M. Zhang, “The effect of hydrostatic pressure on martensitic transition and magnetocaloric effect of Mn44.7Ni43.5Sn11.8 ribbons,” Solid State Communications, Vol. 308, p. 113821, 2020.
[68] P. Sivaprakasha, S. Esakki Muthub, A. K. Singh, K. K. Dubeyc, M. Kannana, S. Muthukumarana, S. Guhad, M. Kard, S. Singh, S. Arumugam, “Effect of chemical and external hydrostatic pressure on magnetic and magnetocaloric properties of Pt doped Ni2MnGa shape memory Heusler alloys,” Journal of Magnetism and Magnetic Materials, Vol. 514, p. 167136, 2020.
[69] B. Han, X. Tian, L. Zhao, W. Zhao, T. Ma, C. Wang, K. Zhang, C. Tan, “Dynamically tunable operating temperature range of Ni-Co-Mn-Sn magnetic shape memory alloys via pressure modulation,” Journal of Magnetism and Magnetic Materials, Vol. 553, p. 169304, 2022.
[70] F. Albertini, J. Kamarád, Z. Arnold, L. Pareti, E. Villa, and L. Righi, “Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys,” Journal of Magnetism and Magnetic Materials, Vol. 316, pp. 364-367, 2007.
[71] Y. Yang, Z. Li, C. F. Sánchez-Valdés, J. L. S. Llamazares, B. Yang, Y. Zhang, C. Esling, X. Zhao, and L. Zuo, “Phase transformation and magnetocaloric effect of Co-doped Mn–Ni–In melt-spun ribbons,” Journal of Applied Physics, Vol. 128, p. 055110, 2020.
[72] Y. Jiang, Z. Li, Z. Li, Y. Yang, B. Yang, Y. Zhang, C. Esling, X. Zhao, and L. Zuo, “Magnetostructural transformation and magnetocaloric effect in Mn-Ni-Sn melt-spun ribbons,” The European Physical Journal Plus, Vol. 132, No. 42, 2017.
[73] N. V. R. Rao, R. Gopalan, V. Chandrasekaran, and K. G. Suresh, “Microstructure, magnetic properties and magnetocaloric effect in melt-spun Ni–Mn–Ga ribbons,” Journal of Alloys and Compounds, Vol. 478, pp. 59–62, 2009.
[74] Z. B. Li, J. L. Sanchez Llamazares, C. F. Sanchez-Valdes, Y. D. Zhang, C. Esling, X. Zhao, and L. Zuo, “Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon,” Applied Physics Letters, Vol. 100, p. 174102, 2012.
[75] V. A. Chernenko, V. V. Kokorin, and I. N. Vitenko, “Properties of ribbon made from shape memory alloy Ni2MnGa by quenching from the liquid state,” Smart Materials and Structures, Vol. 3, p. 80, 1994.
[76] J. Pons, C. Seguí, V. A. Chernenko, E. Cesari, P. Ochin, and R. Portier, “Transformation and ageing behaviour of melt-spun Ni–Mn–Ga shape memory alloys,” Materials Science and Engineering: A, Vol. 273–275, pp. 315-319, 1999.
[77] W. Wang, J. Yu, Q. Zhai, Z. Luo, and H. Zheng,” Origin of retarded martensitic transformation in Heusler Ni–Mn–Sn melt-spun ribbons,” Intermetallics, Vol. 42, pp. 126-129, 2013.
[78] V. A. Chernenko, G. N. Kakazei, A. O. Perekos, E. Cesari, S. Besseghini, “Magnetization anomalies in melt-spun Ni–Mn–Ga ribbons,” Journal of Magnetism and Magnetic Materials, Vol. 320, pp. 1063–1067, 2008.
[79] M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, “On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies,” Physicia Status Solidi A, Vol. 208, Issue 3, pp. 493-501, 2011.
[80] R. Varga, T. Ryba, Z. Vargova, K. Saksl, V. Zhukova, and A. Zhukov, “Magnetic and structural properties of Ni–Mn–Ga Heusler-type microwires,” Scripta Materialia, Vol. 65, pp. 703-706, 2011.
[81] V. Zhukova, A. M. Aliev, R. Varga, A. Aronin, G. Abrosimova, A. Kiselev, and A. Zhukov, “Magnetic Properties and MCE in Heusler-Type Glass-Coated Microwires,” Journal of Superconductivity and Novel Magnetism, Vol. 26, pp. 1415-1419, 2013.
[82] A. Zhukov, V. Rodionova, M. Ilyn, A. M. Aliev, R. Varga, S. Michalik, A. Aronin, G. Abrosimova, A. Kiselev, M. Ipatov, and V. Zhukova, “Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires,” Journal of Alloys and Compounds, Vol. 575, pp. 73-79, 2013.
[83] V. Zhukova, V. Chernenko, M. Ipatov, and A. Zhukov, “Magnetic Properties of Heusler-Type NiMnGa Glass-Coated Microwires,” IEEE Transactions on Magnetics, Vol. 51, No 11, pp. 1-4, 2015.
[84] Z. Ding, Q. Qi, D. Wu, J. Liu, X. Sun, Y. Cui, M. Yue, Y. Zhang, J. Zhu, “Superlattice in austenitic Ni-Mn-Ga shape memory microwires,” Journal of Alloys and Compounds, Vol. 777, pp. 174-179, 2019.
[85] Y. Liu, X. Zhang, D. Xing, H. Shen, D. Chen, J. Liu, J. Sun, “Magnetocaloric effect (MCE) in melt-extracted Ni–Mn–Ga–Fe Heusler microwires,” Journal of Alloys and Compounds, Vol. 616, pp. 184–188, 2014.
[86] H. Zhang, M. Qian, X. Zhang, S. Jiang, L. Wei, D. Xing, J. Sun, L. Geng, “Magnetocaloric effect of Ni-Fe-Mn-Sn microwires prepared by melt-extraction technique,” Materials & Design, Vol. 114, pp. 1–9, 2017.
[87] X. Zhang, M. Qian, Z. Zhang, L. Wei, L. Geng, and J. Sun, “Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires,” Applied Physics Letters, Vol. 108, p. 052401, 2016.
[88] M. F. Qiana, X. X. Zhang, X. Li, R. C. Zhang, P. G. Martin, J. F. Suna, L. Geng, T. B. Scott, H. X. Peng, “Magnetocaloric effect in bamboo-grained Ni-Mn-Ga microwires over a wide working temperature interval,” Materials & Design, Vol. 190, p. 108557, 2020.
[89] P. G. Tello, F. J. Castano, R. C. O’Handley, S. M. Allen, M. Esteve, F. Castano, A. Labarta, and X. Batlle, “Ni–Mn–Ga thin films produced by pulsed laser deposition,” Journal of Applied Physics, Vol. 91, pp. 8234-8236, 2002.
[90] A. Annadurai, A. K. Nandakumar, S. Jayakumar, M. D. Kannan, M. M. Raja, S. Bysak, R. Gopalan, V. Chandrasekaran, “Composition, structure and magnetic properties of sputter deposited Ni–Mn–Ga ferromagnetic shape memory thin films,” Journal of Magnetism and Magnetic Materials, Vol. 321, pp. 630–634, 2009.
[91] E. Yuzuak, I. Dincer, Y. Elerman, A. Auge, N. Teichert, and A. Hutten, “Inverse magnetocaloric effect of epitaxial Ni-Mn-Sn thin films,” Applied Physics Letters, Vol. 103, p. 222403, 2013.
[92] A. Sharma, S. Mohan, S. Suwas, “Development of bi-axial preferred orientation in epitaxial NiMnGa thin films and its consequence on magnetic properties,” Acta Materialia, Vol. 113, pp. 259-271, 2016.
[93] B. Weise, B. Dutta, N. Teichert, A. Hütten, T. Hickel, and A. Waske, “Role of disorder when upscaling magnetocaloric Ni-Co-Mn-Al Heusler alloys from thin films to ribbons,” Scientific Reports, Vol. 8, No. 9147, 2018.
[94] H. Yako, T. Shima and M. Doi, “Magnetic properties and magnetocaloric effect of Ni2Mn1+xSn1-x Heusler alloy thin films,” INTERMAG, Singapore, pp. 1-1, 2018.
[95] C. Rousselot, D. Bourgault, P. Delobelle, “Thermo-magneto-mechanical properties of near stoichiometric Ni2MnGa (Mn > Ga) thin films deposited by radio-frequency magnetron sputtering on Si substrate,” Thin Solid Films, Vol. 768, p. 139718, 2023.
[96] Y. Zhang, R. A. Hughes, J. F. Britten, W. Gong, J. S. Preston, G. A. Botton, and M. Niewczas, “Epitaxial Ni–Mn–Ga films derived through high temperature in situ depositions,” Smart Materials and Structures, Vol. 18, p. 025019, 2009.
[97] I. R. Aseguinolaza, I. Orue, A. V. Svalov, K. Wilson, P. Müllner, J. M. Barandiarán, V. A. Chernenko, “Martensitic transformation in Ni–Mn–Ga/Si(100) thin films,” Thin Solid Films, Vol. 558, pp. 449-454, 2014.
[98] A. Auge, N. Teichert, M. Meinert, G. Reiss, A. Hütten, E. Yüzüak, I. Dincer, Y. Elerman, I. Ennen, and P. Schattschneider, “Thickness dependence of the martensitic transformation, magnetism, and magnetoresistance in epitaxial Ni-Mn-Sn ultrathin films,” Physical Review B, Vol. 85, p. 214118, 2012.
[99] N. Teichert, D. Kucza, O. Yildirim, E. Yuzuak, I. Dincer, A. Behler, B. Weise, L. Helmich, A. Boehnke, S. Klimova, A. Waske, Y. Elerman, and A. Hutten, “Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films,” Physical Review B, Vol. 91, p. 184405, 2015.
[100] V. Recarte, J. I. Pérez-Landazábal, V. Sánchez-Alárcos, V. A. Chernenko, and M. Ohtsuka, “Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni–Mn–Ga thin films,” Applied Physics Letters, Vol. 95, p. 141908, 2009.
[101] Y. Zhang, R. A. Hughes, J. F. Britten, P. A. Dube, J. S. Preston, G. A. Botton, and M. Niewczas, “Magnetocaloric effect in Ni-Mn-Ga thin films under concurrent magnetostructural and Curie transitions,” Journal of Applied Physics, Vol. 110, p. 013910, 2011.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation