Full Paper View Go Back

Cobalt-ferrite Nanoparticles and Their Various Technological Applications: A Short Review

D. Pal1

  1. Department of Physics, Gokhale Memorial Girls’ College, Kolkata, India.

Section:Review Paper, Product Type: Journal-Paper
Vol.11 , Issue.5 , pp.25-30, Oct-2023


Online published on Oct 31, 2023


Copyright © D. Pal . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: D. Pal, “Cobalt-ferrite Nanoparticles and Their Various Technological Applications: A Short Review,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.5, pp.25-30, 2023.

MLA Style Citation: D. Pal "Cobalt-ferrite Nanoparticles and Their Various Technological Applications: A Short Review." International Journal of Scientific Research in Physics and Applied Sciences 11.5 (2023): 25-30.

APA Style Citation: D. Pal, (2023). Cobalt-ferrite Nanoparticles and Their Various Technological Applications: A Short Review. International Journal of Scientific Research in Physics and Applied Sciences, 11(5), 25-30.

BibTex Style Citation:
@article{Pal_2023,
author = {D. Pal},
title = {Cobalt-ferrite Nanoparticles and Their Various Technological Applications: A Short Review},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {10 2023},
volume = {11},
Issue = {5},
month = {10},
year = {2023},
issn = {2347-2693},
pages = {25-30},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3314},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3314
TI - Cobalt-ferrite Nanoparticles and Their Various Technological Applications: A Short Review
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - D. Pal
PY - 2023
DA - 2023/10/31
PB - IJCSE, Indore, INDIA
SP - 25-30
IS - 5
VL - 11
SN - 2347-2693
ER -

69 Views    125 Downloads    21 Downloads
  
  

Abstract :
Cobalt ferrite magnetic nanoparticles have been regarded as a significant material in the field of nanotechnology for their desirable physical, chemical, magnetic, electrical and optical properties. The particles possess rich and unique magnetic properties such as high magnetocrystalline anisotropy, high coercivity, and moderate saturation magnetization etc. Easy synthesis of the particles with tunable sizes and different shapes along with chemical stability make them practically important in various technological applications. Tunable magnetic properties of the nanoparticles open up the possibility of a diverse range of useful applications such as high-density magnetic storage media, sensors, telecommunications, nano-biotechnology etc. This review article represents an overview of synthesis techniques, magnetic properties and various applications of cobalt ferrite nanoparticles including hyperthermia therapy, drug delivery, magnetic resonance imaging etc.

Key-Words / Index Term :
Cobalt ferrite, Magnetocrystalline anisotropy, Coercivity, Superparamagnetism, Hyperthermia, Drug delivery.

References :
[1] M. Kamran, and M. Anis-ur-Rehman, “Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications,” Journal of Alloys and Compounds, Vol. 822, p. 153583, 2020.
[2] A. Amirabadizadeh, Z. Salighe, R. Sarhaddi, and Z. Lotfollahi, “Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties,” Journal of Magnetism and Magnetic Materials, Vol. 434, pp. 78-85, 2017.
[3] M. Nidhin, S. S. Nazeer, R. S. Jayasree, M. S. Kiran, B. U. Nair, and K. J. Sreeram, “Flower shaped assembly of cobalt ferrite nanoparticles: application as T2 contrast agent in MRI,” RSC Advances, Vol. 3, pp. 6906-6912, 2013.
[4] X. Mou, Z. Ali, S. Li, and N. He, “Applications of Magnetic Nanoparticles in Targeted Drug Delivery System,” Journal of Nanoscience and Nanotechnology, Vol. 15, pp. 54–62, 2015.
[5] S. Fayazzadeh, M. Khodaei, M. Arani, S. R. Mahdavi, T. Nizamov, and A. Majouga, “Magnetic Properties and Magnetic Hyperthermia of Cobalt Ferrite Nanoparticles Synthesized by Hydrothermal Method,” Journal of Superconductivity and Novel Magnetism, Vol. 33, pp. 2227-2233, 2020.
[6] P. Halvaee, S. Dehghani, S. Hoghoghifard, “Low Temperature Methanol Sensors Based on Cobalt Ferrite Nanoparticles, Nanorods, and Porous Nanoparticles," IEEE Sensors Journal, vol. 20, pp. 4056-4062, 2020.
[7] F. J. Pedrosa, J. Rial, K. M. Golasinski, M. N. Guzik, A. Quesada, J. F. Fern®andez, S. Deledda, J. Camarero, and A. Bollero, “Towards high performance CoFe2O4 isotropic nanocrystalline powder for permanent magnet applications,” Applied Physics Letter, Vol. 109, p. 223105, 2016.
[8] V. Tsurkan, H.-A. Krug von Nidda, J. Deisenhofer, P. Lunkenheimer, and A. Loidl, “On the complexity of spinels: Magnetic, electronic, and polar ground states,” Physics Reports, Vol. 926, pp. 1–86, 2021.
[9] D. Carta, A. Corrias, A. Falqui, R. Brescia, E. Fantechi, F. Pineider, and C. Sangregorio, “EDS, HRTEM/STEM, and X-ray absorption spectroscopy studies of co-substituted maghemite nanoparticles,” The Journal of Physical Chemistry C, Vol. 117 (18), pp. 9496-9506, 2013.
[10] M. N. Singh, A. K. Sinha, and H. Ghosh, Determination of transition metal ion distribution in cubic spinel Co1.5Fe1.5O4 using anomalous x-ray diffraction, AIP Adv., Vol. 5, p. 087115, 2015.
[11] S. C. Goh, C. H. Chia, S. Zakaria, M. Yusoff, C. Y. Haw, S. Ahmadi, N. M. Huang, and H. N. Lim, “Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination,” Materials Chemistry and Physics, Vol. 120, pp. 31–35, 2010.
[12] G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, C. Sangregorio, “Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties,” Journal of Magnetism and Magnetic Materials, Vol. 311, pp. 10-16, 2007.
[13] W. Kachi, A. Majeed Al-Shammari, I. G. Zainal, “Cobalt Ferrite Nanoparticles: Preparation, characterization and salinized with 3-aminopropyl triethoxysilane,” Energy Procedia, Vol. 157, pp. 1353-1365, 2019.
[14] S. M. El-Sheikh, F. A. Harraz, M. M. Hessien, “Magnetic behavior of cobalt ferrite nanowires prepared by template-assisted technique,” Materials Chemistry and Physics, Vol. 123, pp. 254–259, 2010.
[15] P. Jing, J. Du, C. Jin, J. Wang, L. Pan, J. Li and Q. Liu, “Improved coercivity and considerable saturation magnetization of cobalt ferrite (CoFe2O4) nanoribbons synthesized by electrospinning,” Journal of Materials Science, Vol. 51, pp. 885–892, 2016.
[16] F. Eskandari, S. B. Porter, M. Venkatesan, P. Kameli, K. Rode, and J. M. D. Coey, “Magnetization and anisotropy of cobalt ferrite thin films,” Physical Review Materials, Vol. 1, p. 074413, 2017.
[17] J. Wagner, T. Autenrieth, and R. Hempelmann, “Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4–SiO2 core shell particles],” Journal of Magnetism and Magnetic Materials, Vol. 252, pp. 4-6, 2002.
[18] L. A. GarcĂ­a-Cerda, M. U. Escareñoastro, M. Salazar-Zertuche, “Preparation and characterization of polyvinyl alcohol–cobalt ferrite nanocomposites,” Journal of Non-Crystalline Solids, Vol. 353, pp. 808-810, 2007.
[19] J. Mohapatra, M. Xing, J. Elkins, J. Beatty, and J. P. Liu, “Size-dependent magnetic hardening in CoFe2O4 nanoparticles: effects of surface spin canting,” Journal of Physics D: Applied Physics, Vol. 53, p. 504004, 2020.
[20] A. López-Ortega, E. Lottini, C. de Julián Fernández, and C. Sangregorio, “Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of rare-earth-free permanent magnet,” Chemistry of Materials, Vol. 27, pp. 4048–4056, 2015.
[21] J. G. Lee, J. Y. Park, and C. S. Kim, “Growth of ultra-fine cobalt ferrite particles by a sol–gel method and their magnetic properties,” Journal of Materials Science, Vol. 33, pp. 3965–3968, 1998.
[22] D. D. Andhare, S. R. Patade, J. S. Kounsalye, K. M. Jadhav, “Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method,” Physica B: Condensed Matter, Vol. 583, p. 412051, 2020.
[23] G. Allaedini, S. M. Tasirin, and P. Aminayi, “Magnetic properties of cobalt ferrite synthesized by hydrothermal method,” International Nano Letters, Vol. 5, pp. 183–186, 2015.
[24] D. Pal, M. Mandal, A. Chaudhuri, B. Das, D. Sarkar, and K. Mandal, “Micelles induced high coercivity in single domain cobalt-ferrite nanoparticles,” Journal of Applied Physics,” Vol. 108, p. 124317, 2010.
[25] T. Niizeki, Y. Utsumi, R. Aoyama, H. Yanagihara, J. Inoue et al, “Extraordinarily large perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite CoxFe3?xO4(001) (x?=?0.75, 1.0) thin films,” Applied Physics Letter, Vol. 103, p. 162407, 2013.
[26] A. Raghunathan, I. C. Nlebedim, D. C. Jiles, J. E. Snyder, “Growth of crystalline cobalt ferrite thin films at lower temperatures using pulsed-laser deposition technique,” Journal of Applied Physics, Vol. 107, p. 09A516, 2010.
[27] S. A. Chambers, R. F. C. Farrow, S. Maat, M. F. Toney, L. Folks, J. G. Catalano, T. P. Trainor, G. E. Brown Jr, “Molecular beam epitaxial growth and properties of CoFe2O4 on MgO (0 0 1),” Journal of Magnetism and Magnetic Materials, Vol. 246, pp. 124-139, 2002.
[28] A. A. Bagade, V. V. Ganbavle, S. V. Mohite, T. D. Dongale, B. B. Sinha, K. Y. Rajpure, “Assessment of structural, morphological, magnetic and gas sensing properties of CoFe2O4 thin films,” Journal of Colloid and Interface Science, Vol. 497, pp. 181-192, 2017.
[29] F. Tudorachea, P. D. Popa, M. Dobromir, F. Iacomi, “Studies on the structure and gas sensing properties of nickel–cobalt ferrite thin films prepared by spin coating,” Materials Science and Engineering B, Vol. 178, pp. 1334-1338, 2013.
[30] V. A. Jundale, D. A. Patil, G. Y. Chorage, A. A. Yadav, “Mesoporous cobalt ferrite thin film for supercapacitor applications,” Materials Today: Proceedings, Vol. 43, pp. 2711-2715, 2021.
[31] W. Hu, L. Zou, R. Chen, W. Xie, X. Chen, N. Qin, S. Li, G. Yang, and D. Bao, “Resistive switching properties and physical mechanism of cobalt ferrite thin films,” Applied Physics Letters, Vol. 104, p. 143502, 2014.
[32] A. Das, D. De, A. Ghosh, M. M. Goswami, “DNA engineered magnetically tuned cobalt ferrite for hyperthermia application,” Journal of Magnetism and Magnetic Materials, Vol. 475, pp.787-793, 2019.
[33] D. Pal, “Magnetic Nanoparticles in Various Biomedical Applications,” Journal of Advanced Scientific Research, Vol. 13, pp. 1-6, 2022.
[34] S. N. Piramanayagam, “Perpendicular recording media for hard disk drives,” Journal of Applied Physics, Vol. 102, p. 011301, 2007.
[35] R. Sbiaa, H. Meng, and S. N. Piramanayagam, “Materials with perpendicular magnetic anisotropy for magnetic random access memory,” Physica Status Solidi, Rapid Research Letters, Vol. 5, pp. 413–419, 2011.
[36] H. Yanagihara, Y. Utsumi, T. Niizeki, J. Inoue, and E. Kita, “Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films,” Journal of Applied Physics, Vol. 115, p. 17A719, 2014.
[37] H. Onoda, H. Sukegawa, E. Kita and H. Yanagihara, “Control of Magnetic Anisotropy by Lattice Distortion in Cobalt Ferrite Thin Film,” IEEE Transactions on Magnetics, Vol. 54, pp. 1-4, 2018.
[38] Y. Suzuki, G. Hu, R. B. van Dover, R. J. Cava, “Magnetic anisotropy of epitaxial cobalt ferrite thin films,” Journal of Magnetism and Magnetic Materials, Vol. 191, pp. 1-8, 1999.
[39] B. D. Cullity, “Introduction to Magnetic Material,” 2nd ed. London: Addison-Wesley; 1972.
[40] C. N. Chinnasamy, M. Senoue, B. Jeyadevan, Oscar Perales-Perez, K. Shinoda, and K. Tohji, “Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio,” Journal of Colloid and Interface Science, Vol. 263, pp. 80–83, 2003.
[41] S. Amiri, H. Shokrollahi, “The role of cobalt ferrite magnetic nanoparticles in medical science,” Materials Science and Engineering C, Vol. 33, pp. 1–8, 2013.
[42] W. S. Chiua, S. Radiman, R. Abd-Shukor, M. H. Abdullah, P. S. Khiew, “Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment,” Journal of Alloys and Compounds, Vol. 459, pp. 291–297, 2008.
[43] D. Pal, “Annealing Induced Coercivity in Cobalt-ferrite Nanoparticles Prepared by Coprecipitation Method,” International Journal of Scientific Research in Physics and Applied Sciences, Vol. 11, pp. 01-05, 2023.
[44] M. V. Limaye, S. B. Singh, S. K. Date, D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, R. J. Choudhary, S. K. Kulkarni, “High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature,” Journal of Physical Chemistry B, Vol. 113, pp. 9070–9076, 2009.
[45] B. H. Liu, J. Ding, “Strain-induced high coercivity in CoFe2O4 powders,” Journal of Physical Chemistry B, Vol. 88, p. 042506, 2006.
[46] S. Y. Srinivasan, K. M. Paknikar, D. Bodas, and V. Gajbhiye, “Applications of cobalt ferrite nanoparticles in biomedical nanotechnology,” Nanomedicine, Vol. 13, No. 10, 2018.
[47] D. Pal, D. De, A. Das, A. Chaudhuri, and M. M. Goswami, “Synthesis of Micelles Guided Co-Ferrite Particles and Their Application for AC Magnetic Field Stimulated Drud Release,” Journal of Advance Scientific Research, Vol. 11(03), pp. 170-175, 2020.
[48] P. A. Vinosha, A. Manikandan, A. Christy Preetha, A. Dinesh, Y. Slimani, M. A. Almessiere, A. Baykal, B. Xavier, and G. F. Nirmala, “Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites,” Journal of Superconductivity and Novel Magnetism, Vol. 34, PP. 995–1018, 2021.
[49] A. K. Gupta, and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, Vol. 26 (18), pp. 3995-4021, 2005.
[50] S. Ge, X. Shi, K. Sun, C. Li, C. Uher, J. R. Baker Jr., M. M. B. Holl, and B. G. Orr, “Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties,” The Journal of Physical Chemistry C, Vol. 113(31), pp. 13593-13599, 2009.
[51] Y. Lee, J. Lee, C.?J. Bae, J.-G. Park, H.-J. Noh, J.-H. Park, T. Hyeon, “Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions,” Advanced Functional Materials, Vol. 15, pp. 503-509, 2005.
[52] P. Guardia, A. Labarta and X. Batlle, “Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles,” The Journal of Physical Chemistry C, Vol. 115, pp. 390–396, 2011.
[53] B. H. Liu, J. Ding, Z. L. Dong, C. B. Boothroyd, J. H. Yin, and J. B. Yi, “Microstructural evolution and its influence on the magnetic properties of CoFe2O4 powders during mechanical milling,” Physical Review B, Vol. 74, p. 184427, 2006.
[54] M. V. Limaye, S. B. Singh, S. K. Date, D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, R. J. Choudhary, and S. K. Kulkarni, “High Coercivity of Oleic Acid Capped CoFe2O4 Nanoparticles at Room Temperature,” The Journal of Physical Chemistry B, Vol. 113, pp. 9070–9076, 2009.
[55] T. Yadavalli, H. Jain, G. Chandrasekharan, R. Chennakesavulu, “Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method”, AIP Advances, Vol. 6, p. 055904, 2016.
[56] A. H. Habib, C. L. Ondeck, P. Chaudhary, M. R. Bockstaller and M. E. McHenry, “Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy,” Journal of Applied Physics, Vol. 103, p. 07A307, 2008.
[57] S. A. Hassanzadeh-Tabrizi, H. Norbakhsh, R. Pournajaf, M. Tayebi, “Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications,” Ceramics International, Vol. 47, pp. 18167-18176, 2021.
[58] J. Ding, Y. J. Chen, Y. Shi, and S. Wang, “High coercivity in SiO2-doped CoFe2O4 powders and thin films,” Applied Physics Letters, Vol. 77, pp. 3621–3623, 2000.
[59] H. Zheng, et al. “Multiferroic BaTiO3-CoFe2O4 Nanostructures.” Science (New York, N.Y.) Vol. 303, p. 5658, 2004.
[60] P. A. Vinosha, A. Manikandan, R. Ragu, A. Dinesh, K. Thanrasu, Y. Slimani, A. Baykal, B. Xavie, “Impact of nickel substitution on structure, magneto-optical, electrical and acoustical properties of cobalt ferrite nanoparticles, “Journal of Alloys and Compounds,” Vol. 857, p. 157517, 2021.
[61] S. Y. Srinivasan, K. M. Paknikar, D. Bodas, and V. Gajbhiye, “Applications of cobalt ferrite nanoparticles in biomedical nanotechnology,” Nanomedicine (Lond.), Vol. 13, No. 10, 2018.
[62] M. A. Khan, M. J. U. Rehman, K. Mahmood, I. Ali, M. N. Akhtar, G. Murtaza, I. Shakir, M. F. Warsi, “Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method,” Ceramics International, Vol. 41, pp. 2286-2293, 2015.
[63] R. B. Falk, G. D. Hooper, Journal of Applied Physics, Vol. 32, p. 190S, 1961.
[64] S. Singh, A. Singh, B. C. Yadav, P. Tandon, “Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide,” Materials Science in Semiconductor Processing, Vol. 23, pp. 122-135, 2014.
[65] C. Xiangfeng, J. Dongli, G. Yu, Z. Chenmou, “Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method,” Sensors and Actuators B: Chemical, Vol. 120, pp. 177-181, 2006.
[66] Z. Li and K. A. Kho, “Preparation and Properties of Coatings and Thin Films on Metal Implants,” Encyclopedia of Biomedical Engineering, Vol. 13, pp. 203-212, 2019.
[67] P. Kumar, P. Mahajan, R. Kaur, and S. Gautam, “Nanotechnology and its challenges in the food sector: a review,” Materials Today Chemistry, Vol. 17, p. 100332, 2020.
[68] D. Gheidari, M. Mehrdad, S. Maleki, and S. Hosseini, “Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light,” Heliyon, Vol. 6, p. e05058, 2020.
[69] S. Amiri and H. Shokrollahi, “Magnetic and structural properties of RE doped Co-ferrite (REĂ„Nd, Eu, and Gd) nano-particles synthesized by co-precipitation,” Journal of Magnetism and Magnetic Materials, Vol. 345, pp. 18-23, 2013.
[70] G. Dascalu, T. Popescu, M. Feder, O. F. Caltun, “Structural, electric and magnetic properties of CoFe1.8RE0.2O4 (RE=Dy, Gd, La) bulk materials,” Journal of Magnetism and Magnetic Materials, Vol. 333, pp. 69-74, 2013.
[71] Mohd. Hashim, M. Raghasudha, S. S. Meena, J. Shah et al, “Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 449, pp. 319-327, 2018.
[72] A. K. Nikumbh, R. A. Pawar, D. V. Nighot, G. S. Gugale, M. D. Sangale, M. B. Khanvilkar, A. V. Nagawade, “Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method,” Journal of Magnetism and Magnetic Materials, Vol. 355, pp. 201-209, 2014.
[73] S. Fiaz, M. N. Ahmed, I. U. Haq, S. W. A. Shah , M. Waseem, “ Green synthesis of cobalt ferrite and Mn doped cobalt ferrite nanoparticles: Anticancer, antidiabetic and antibacterial studies,” Journal of trace elements in medicine and biology: organ of the Society for Minerals and Trace Elements (GMS), Vol.80, p. 127292, 2023.
[74] R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, “Magnetic and electrical properties of In doped cobalt ferrite nanoparticles,” Journal of Applied Physics, Vol. 112, p. 084321, 2012.
[75] A. S. Priya, D. Geetha, N. Kavitha, “Effect of Al substitution on the structural, electric and impedance behavior of cobalt ferrite,” Vacuum, Vol. 160, pp. 453-460, 2019.
[76] K. Wu, D. Su, J. Liu, R. Saha, and J. P. Wang, “Magnetic nanoparticles in nanomedicine: a review of recent advances,” Nanotechnology, Vol. 30, p. 502003, 2019.
[77] M. A. Medina, G. Oza, A. Ángeles-Pascual, M. M. GonzĂĄlez, R. Antaño-LĂłpez, A. Vera, L. Leija, E. Reguera, L. G. Arriaga, J. M. HernĂĄndez HernĂĄndez et al, “Synthesis, Characterization and Magnetic Hyperthermia of Monodispersed Cobalt Ferrite Nanoparticles for Cancer Therapeutics,” Molecules, Vol. 25(19), pp. 4428, 2020.
[78] R. A. Bohara, N. D. Thorat, H. M. Yadav, and S. H. Pawar, “One-step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications,” New Journal of Chemistry, Vol. 38, pp. 2979-2986, 2014.
[79] S. M. Ansari, B. B. Sinha, K. R. Pai, S. K. Bhat, Y. R. Ma, D. Sen et al, “Controlled surface/interface structure and spin enabled superior properties and biocompatibility of cobalt ferrite nanoparticles,” Applied Surface Science, Vol. 459, pp. 788-801, 2018.
[80]M. Lickmichand, C.S. Shaji, N. Valarmathi, A. S. Benjamin, R. A. Kumar, S. Nayak, R. Saraswathy et al, “In vitro biocompatibility and hyperthermia studies on synthesized cobalt ferrite nanoparticles encapsulated with polyethylene glycol for biomedical applications,” Materials Today: Proceedings, Vol.15, pp.252–261, 2019.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation