Full Paper View Go Back
Capacity Imbalance and Diffusion Kinetic Between the Electrodes of Hybrid Supercapacitor: A Review
S.E. Umoru1
Section:Review Paper, Product Type: Journal-Paper
Vol.12 ,
Issue.1 , pp.7-23, Feb-2024
Online published on Feb 28, 2024
Copyright © S.E. Umoru . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: S.E. Umoru, âCapacity Imbalance and Diffusion Kinetic Between the Electrodes of Hybrid Supercapacitor: A Review,â International Journal of Scientific Research in Physics and Applied Sciences, Vol.12, Issue.1, pp.7-23, 2024.
MLA Style Citation: S.E. Umoru "Capacity Imbalance and Diffusion Kinetic Between the Electrodes of Hybrid Supercapacitor: A Review." International Journal of Scientific Research in Physics and Applied Sciences 12.1 (2024): 7-23.
APA Style Citation: S.E. Umoru, (2024). Capacity Imbalance and Diffusion Kinetic Between the Electrodes of Hybrid Supercapacitor: A Review. International Journal of Scientific Research in Physics and Applied Sciences, 12(1), 7-23.
BibTex Style Citation:
@article{Umoru_2024,
author = {S.E. Umoru},
title = {Capacity Imbalance and Diffusion Kinetic Between the Electrodes of Hybrid Supercapacitor: A Review},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {2 2024},
volume = {12},
Issue = {1},
month = {2},
year = {2024},
issn = {2347-2693},
pages = {7-23},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3413},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3413
TI - Capacity Imbalance and Diffusion Kinetic Between the Electrodes of Hybrid Supercapacitor: A Review
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - S.E. Umoru
PY - 2024
DA - 2024/02/28
PB - IJCSE, Indore, INDIA
SP - 7-23
IS - 1
VL - 12
SN - 2347-2693
ER -
Abstract :
The need for energy storage devices that have significant power and energy density, outstanding cycle stability and charging and discharging cycles, affordability, and excellent environmental protection has propelled the creation and advancement of hybrid supercapacitors. Because hybrid supercapacitor utilizes two types of electrodes made of different materials, the mechanisms of charge storage are also different and hence there are gaps in terms of capacity imbalance and diffusion kinetics. This work reviews the different promising methods or techniques that can be used to tackle these problems militating against the performance and commercialized applications of hybrid supercapacacitors. The control of electrodes open circuit voltage (OCV), utilization of redox couple materials, utilization of water in salt (WIS) electrolytes, the use of core-shell hybrid nanostructures, mass and Charge Balancing approach, Electrodesâ structural design and control, incorporating of two-dimensional carbon materials, utilization of Materials with Good conductivity, choosing an appropriate electrolyte are some of the different techniques reviewed in this work. This article also examines the difficulties associated with several approaches for future study aimed at enhancing hybrid supercapacitor functionality.
Key-Words / Index Term :
Hybrid supercapacitor, Energy storage device, Electrode, Electrolyte, capacity imbalance, diffusion kinetics
References :
[1] Remi and Kahwaji, âSupercapacitors: A short literature Reviewâ, http://doi.org/10.13140/RG2.2.14032.35846, 2019
[2] Mia A M, RA Fahim, AE Shalan, âAdvanced materials and technologies for supercapacitors used in energy conversion and storage: a reviewâ, Environmental Chemistry Letters. Vol.19, pp.375â439, 2021
[3] Wenhua Zuo, Ruizhi Li, Cheng Zhou, Yuanyuan Li, Jianlong Xia, Jinping Liu, âBattery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospectsâ, Advanced Science,Vol. 4, Issue 7, pp. 1600539, 2017.
[4] Xingjiang Wu, Xude Yu, Zekai Zhang, Hengyuan Liu, SiDa Ling, Xueyan Liu, Cheng Lian, Jianhong Xu, âAnisotropic ZnS Nanoclusters/Ordered Macro-Microporous Carbon Superstructure for Fibrous Supercapacitor toward Commercial-Level Energy Densityâ, Advanced Functional Materials. 2023
[5] Bhaskar J. C, Harrison H M, Vijayanand S M, âBiomass blend derived porouscarbonforaqueous supercapacitors with commercial-level mass loadings and enhanced energy density in redox-active electrolyteâ. Applied surface Science. Vol.601,Issue 1, pp. 154202, 2022
[6] Satpathy S, Neeraj K M, Dhirendra k S, Vishal G, Bidyut K B, Chandra SY, âAn indepthstudy of the electrical characterization of supercapacitors for recent trends in energy storage systemâ, Journal of energy Storage. Vol.57, pp.106198, 2023.
[7] Manickam M and Wickramaarachchi K, âElectrochemical aspects of supercapacitors in perspective: From electrochemical configurations to electrode materials processing â, Progress in Solid State Chemistry. Vol.69, pp.100390, 2023
[8] Jihyeon Park, Seungju Jo , Narasimharao Kitchamsetti , Shakir Zaman , Daewon Kim ,âThe development of NiCo2O4/PVP/PANI heterogeneous nanocomposites as an advanced battery type electrode material for high-performing supercapacitor applicationâ, Journal of Alloys and Comounds. Vol.926, issue 10, pp.166815, 2023
[9] K. Karuppasamy , Dhanasekaran Vikraman, Ranjith Bose, Sajjad Hussain, P. Santhoshkumar, Rmu Manikandan , Jongwan Jung , Saeed Alameri , Akram Alfantazi , Hyun-Seok Kim, âUnveiling the redox electrochemical kinetics of interconnected wrinkled microspheres of binary Cu2-xSe/Ni1-xSe as battery-type electrode for advanced supercapatteriesâ, Journal of colloid and interface science, Vol.654, Part B, pp.1098-1110, 2023
[10] Ji Ma , Yangzhan Xu b, Jinkang Liu, Shitong Yang, Mengxiang Chen , Daoying Zheng , Pengkai He b Chunlei Dingb, Chunting Liu, âEffect of electrode pores on potassium-ion storage of ?-Fe2O3â, Journal of Energy Storage, Vol.74, Part B, pp.109554, 2023.
[11] Madhusoodhanan Lathika Divya, Yun-Sung Lee, Vanchiappan Aravindan, âGlyme solvated Na and Li-ion capacitors based on co-intercalation process using pencil graphite as battery type electrodeâ, Journal of Power Sources. Vol.543, pp.231823, 2023
[12] Xiyue He, Xuelai Zhan, âA comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materialsâ, Journal of Energy Storage, pp. 106023, 2022.
[13] Faxing Wang., âDesign and synthesis of electrode materials with both battery-type and capacitive charge storageâ, Energy Storage Materials, Vol.22, pp. 235-255, 2019.
[14] Bailmare DB , P Khajanji and Abbay D Deshmukh, â Multidimensional Graphene-Based Advanced Materials for Electrochemically Stable Supercapacitorsâ, CRC Press ( Taylor and Francis Group), 2022
[15] Shiyue Cao, Qiming Liu, Hongyi Chen, Huijuan Zhu, Yirui Liu, âA bimetallic induced enhanced 3D electron transport network supported by micro constrain area of balls-in-ball structure used for high performance sodium storageâ, Chemical Engineering Journal. Vol.470, pp.144277, 2023.
[16] Syed Shaheen Shah, Md. Abdul Aziz, Muhammad Usman, Abbas Saeed Hakeem, Shahid Ali, Atif Saeed Alzahrani ,âBiomass-based Supercapacitors: Lab to Industryâ, Wiley online library, DOI: https://doi.org/10.1002/9781119866435.ch25, 2023
[17] Li P, Y Peng, J Cai, Y Bai, Q Li, H Pang , âRecent Advances in MetalâOrganic Frameworks (MOFs) and Their Composites for Non-Enzymatic Electrochemical Glucose Sensorsâ, Bioengineering . Vol.10 , issue 6,, pp.733, 2023
[18] Subramani IG, V Perumal, SCB Gopinath, Khor Shing Fhan, & Norani Muti Mohamed,â Organic-Inorganic Hybrid Nanoflower Production and Analytical Utilization: Fundamental to Cutting-Edge Technologiesâ Critical Reviews in Analytical Chemist. Pp. 1488-1510, 2021.
[19] Zhou, Y., Y. Huang, J. Pang, and K. Wang, âRemaining useful life prediction for supercapacitor based on long short-term memory neural networkâ. Journal of Power Sources , Vol.440, pp.227149. doi:10.1016/j.jpowsour..227149, 2019..
[20] Yang, J., C. Yu, X. Fan, and J. Qiu.â3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitorsâ, Advanced Energy Materials Vol.4, Issue 18, pp.1400761. 2014.
[21] Ding, J., H. L. Wang, Z. Li, K. Cui, D. Karpuzov, X. H. Tan, A. Kohandehghan, and D. Mitlin., âPeanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitorsâ, Energy & Environmental Science Vol.8, issue 3, pp.941â55., 2015..
[22] Luo, J. M., W. K. Zhang, H. D. Yuan, C. B. Jin, L. Y. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y. P. Gan, et al. ,âPillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitorsâ. ACS Nano Vol.11, Issue 3, pp.2459â69.2017..
[23] Kim, N. R., S. M. Lee, M. W. Kim, H. J. Yoon, W. G. Hong, H. J. Kim, H. J. Choi, H. J. Jin, and Y. S. Yun, âAmphicharge-storable pyropolymers containing multitiered nanoporesâ, Advanced Energy Materials , Vol.7, Issue 19, pp.:1700629, 2017.
[24] Won, J. H., H. M. Jeong, and J. K. Kang., âSynthesis of nitrogen-rich nanotubes with internal compartments having open mesoporous channels and utilization to hybrid full-cell capacitors enabling high energy and power densities over robust cycle lifeâ, Advanced Energy Materials , Vol.7, Issue 1, pp.1601355, 2017.
[25] Zhang, S. W., B. S. Yin, X. X. Liu, D. M. Gu, H. Gong, and Z. B. Wang, â A high energy density aqueous hybrid supercapacitor with widened potential window through multi approachesâ; Nano Energy, Vol. 59, pp.41â49, 2019.
[26] ang, B., J. Chen, S. Lei, R. Guo, H. Li, S. Shi, and X. Yan, âSpontaneous growth of 3D framework carbon from sodium citrate for high energy-and power-density and long-life sodium-ion hybrid capacitorsâ, Advanced Energy Materials Vol.8, Issue 10, pp.1702409, 2018.
[27] T., S. Sun, X. Liu, C. LiaYng, G. Wang, and H. Xia., âAchieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitanceâ, Advanced Materials Vol.30, pp.1706640, 2018
[28] Qiu, D., J. Guan, M. Li, C. Kang, J. Wei, Y. Li, Z. Xie, F. Wang, and R. Yang, â Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitorsâ, Advanced Functional Materials Vol.29, Issue 32, pp.1903496, 2019.
[29] Zoller, F., J. Luxa, T. Bein, D. Fattakhova-Rohlfing, D. Bousa, and Z. Sofer, â Flexible freestanding MoS2-based composite paper for energy conversion and storageâ, Beilstein Journal of Nanotechnology Vol.10, pp.1488â96, 2019
[30] Aravindan, V., J. Gnanaraj, Y.-S. Lee, and S. Madhavi, âInsertion-Type electrodes for nonaqueous Li-Ion capacitorsâ, Chemical Reviews Vol.114, issue 23, pp.11619â35, 2014.
[31] Xia, G., Y. Huang, F. Li, L. Wang, J. Pang, L. Li, and K. Wang, âA thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imagingâ, Frontiers of Chemical Science and EngineeringVol. 14 , Issue 6, pp.1039â51, 2020
[32] Van Aken, K. L., M. Beidaghi, and Y. Gogotsi, âFormulation of ionic-liquid electrolyte to expand the voltage window of supercapacitorsâ, Angewandte Chemie International Edition Vol.54, Issue 16, pp.4806â09, 2015.
[33] Weng, Z., F. Li, D. W. Wang, L. Wen, and H. M. Cheng, âControlled electrochemical charge injection to maximize the energy density of supercapacitorsâ, Angewandte Chemie International Edition Vol.52, Issue 13, pp.3722â25, 2013
[34] Shan, X. Y., Y. Z. Wang, D. W. Wang, F. Li, and H. M. Cheng, âArmoring graphene cathodes for high-rate and long-life lithium ion supercapacitorsâ, Advanced Energy Materials Vol. 6, Issue6, pp.1502064, 2016
[35] Wu, Y. T., H. Chen, Y. Z. Lu, J. Yang, X. Q. Zhu, Y. Zheng, G. B. Lou, Y. T. Wu, Q. Wu, Z. H. Shen, Pan, Z. H., et al , âRational design of cobalt-nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performanceâ, Journal of Colloid and Interface Science Vol. 581, pp.455â64, 2021.
[36] Ye, L., Q. H. Liang, Y. Lei, X. L. Yu, C. P. Han, W. C. Shen, Z. H. Huang, F. Y. Kang, and Q. H. Yang, âA high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroformâ, Journal of Power Sources Vol. 282, pp.174â78, 2015
[37] Lim, E., H. Kim, C. Jo, J. Chun, K. Ku, S. Kim, H. I. Lee, I.-S. Nam, S. Yoon, K. Kang, et al., âAdvanced hybrid supercapacitor based on a mesoporous Niobium Pentoxide/Carbon as high-performance anodeâ, ACS Nano Vol. 8 , Issue 9, pp.8968â78, 2014.
[38] Wang, R. T., J. W. Lang, P. Zhang, Z. Y. Lin, and X. B. Yan, âFast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitorsâ, Advanced Functional Materials Vol. 25, Issue15, pp.2270â78, 2015
[39] Wang, H. W., Y. Zhang, H. X. Ang, Y. Q. Zhang, H. T. Tan, Y. F. Zhang, Y. Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, et al., âA high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathodeâ, Advanced Functional Materials Vol. 26, Issue 18, pp.3082â93, 2016
[40] Evanko, B., S. W. Boettcher, S. J. Yoo, and G. D. Stucky, âRedox-Enhanced electrochemical capacitors: Status, opportunity, and best practices for performance evaluationâ, ACS Energy Letters Vol. 2, 11, pp.2581â90, 2017
[41] Chen, L. B., Y. R. Chen, J. F. Wu, J. W. Wang, H. Bai, and L. Li, âElectrochemical supercapacitor with polymeric active electrolyteâ, Journal of Materials Chemistry A, Vol. 2, Issue 27, pp.10526â31, 2014.
[42] Cho, S. Y., H. J. Yoon, N. R. Kim, Y. S. Yun, and H. J. Jin,âSodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms. Journal of Power Sources, Vol. 329, pp.536â45, 2016.
[43] Suo, L., O. Borodin, Y. Wang, X. Rong, W. Sun, X. Fan, S. Xu, M. A. Schroeder, A. V. Cresce, F. Wang, et al., âWater-in-Saltâ electrolyte makes aqueous sodium-ion battery safe, green, and long-lastingâ, Advanced Energy Materials Vol. 7, Issue 21, pp.1701189, 2017
[44] Gambou-Bosca, A., and D. BĂ©langer. âElectrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitorsâ, Journal of Power Sources Vol. 326, pp.595â603, 2016
[45] Ansari, âRecent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applicationâ, Materialstody. Vol. 64, pp.180-208, 2023.
[46] Sahil Sharma, Kushal Qanungo (2023); A review on graphene in energy devices; AIP Publishing. AIP Conference Proceedings, Vol. 2535, Issue1, pp. 030012, 2023
[47] Nimra Muzaffar , Amir Muhammad Afzal a, H.H. Hegazy b c, Muhammad Waqas Iqbal, âRecent advances in two-dimensional metal-organic frameworks as an exotic candidate for the evaluation of redox-active sites in energy storage devices;â, Journal of Energy Storage, Vol.64, pp.107142, 2023
[48] Naoi, K., S. Ishimoto, J. Miyamoto, and W. Naoi, âSecond generation ânanohybrid supercapacitorâ: Evolution of capacitive energy storage devices. Energy & Environmental Science, Vol. 5 , Issue 11, pp.12334, 2012
[49] Feng Z., X. Jiang, X. Tian, F. Zheng, M. Cheng, E. Zhao, W. Ye, Y. Qin, and Y. Zhang, âUltratransparent PMN-PT electro-optic ceramics and its application in optical communication â, Advanced Optical Materials Vol. 9, Issue 13, pp. 2002139, 2021.
[50] Zhang,P., B. Y. Guan, L. Yu, and X. W. Lou, âFormation of double-shelled Zinc-Cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angewandte Chemie International Edition , Vol.56, Issue 25, pp.7141â45, 2017.
[51] Yu M. H., Y. Z. Lu, H. B. Zheng, and X. H. Lu, âNew insights into the operating voltage of aqueous supercapacitorsâ, Chemistry-A European Journal Vol. 24 , Issue15, pp.39â49, 2018
[52] Zhang, P., B. Y. Guan, L. Yu, and X. W. Lou, âFormation of double-shelled Zinc-Cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitorsâ, Angewandte Chemie International Edition Vol. 56, Issue25, pp.7141â45, 2017.
[53] Van Aken, K. L., M. Beidaghi, and Y. Gogotsi, âFormulation of ionic-liquid electrolyte to expand the voltage window of supercapacitorsâ, Angewandte Chemie International Edition Vol. 54, Issue 16, pp.4806â09, 2015
[54] Weng, Z., F. Li, D. W. Wang, L. Wen, and H. M. Cheng, âControlled electrochemical charge injection to maximize the energy density of supercapacitorsâ, Angewandte Chemie International Edition , Vol. 52, Issue 13, pp. 3722â25, 2013.
[55] Huang, Y. L., Y. X. Zeng, M. H. Yu, P. Liu, Y. X. Tong, F. L. Cheng, and X. H. Lu, âRecent smart methods for achieving high-energy asymmetric supercapacitorsâ, Small Methods, Vol.2, Issue 2, pp. 1700230, 2018.
[56] Chang Liu, Baowei Wang, Laiqiang Xu, Kangyu Zou, Wentao Deng, Hongshuai Hou, Guoqiang Zou, and Xiaobo Ji, âNovel Nonstoichiometric Niobium Oxide Anode Material with Rich Oxygen Vacancies for Advanced Lithium-Ion Capacitorsâ, ACS Applied Materials & Interfaces. Vol.15, pp.4, 2023.
[57] Francesco Bizzotto, Walid Dachraoui, Rabeb Grissa, Wengao Zhao, Francesco Pagani, Edouard Querel, Ruben-Simon KĂŒhnel, Corsin Battagliaâ, Modification of NMC811 with titanium for enhanced cycling and high-voltage stability. Electrochimica Acta. Vol. 462, pp. 142758, 2023
[58] Hanping Xu, Jingqiao Zhu, Mincai Xu, Zijie Lei, Qiangli Hu, Xiaojuan Jin, âFlexible and alternately layered high electrochemical active electrode based on MXene, carboxymethylcellulose, and carbon nanotube for asymmetric micro-supercapacitorsâ, Journal of Colloid and Interface Science . Vol. 645, pp. 974-984, 2023.
[59] Jochen Bernhard Gerschler, Dirk Uwe Sauer, âInvestigation of Open-Circuit-Voltage Behaviour of Lithium-Ion Batteries with Various Cathode Materials under Special Consideration of Voltage Equalisation Phenomenaâ, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Germany,pp.17-19, 2009.
[60] Du Pasquier, A., A. Laforgue, P. Simon, G. G. Amatucci, and J. F. Fauvarque, âA nonaqueous asymmetric hybrid Li4 Ti5O12/poly(fluorophenylthiophene) energy storage deviceâ, Journal of the Electrochemical Society Vol.149, Issue 3, pp.A302âA306. 2002.
[61] Li, Z., Y. Zhang, X. Li, F. Gu, L. Zhang, H. Liu, Q. Xia, Q. Li, W. Ye, C. Ge, et al., âReacquainting the electrochemical conversion mechanism of FeS2 sodium-ion batteries by operando magnetometryâ, Journal of the American Chemical Society. Vol. 143, Issue 32, pp.12800â08, 2921
[62] Lingfang Chen, Jun Huang, Rong Zeng, Yushuai Xiong, Junchao Wei, Kai Yuan, âRegulating Voltage Window and Energy Density of Aqueous Asymmetric Supercapacitors by Pinecone-Like Hollow Fe2O3/MnO2 Nano-Heterostructureâ,Advanced Materials Interfaces. Vol. 7, Issue 2, 1901729, 2019.
[63] Yuan, D., C. Zhang, S. Tang, Z. Wang, Q. Sun, X. Zhang, T. Jiao, and Q. Zhang, â Ferric ion-ascorbic acid complex catalyzed calcium peroxide for organic wastewater treatment: Optimized by response surface methodâ, Chinese Chemical Letters, Vol. 32, Issue 11, pp.3387â92. 2021.
[64] Akinwolemiwa, B., C. Peng, and G. Z. Chen, âRedox Electrolytes in Supercapacitorsâ, Journal of the Electrochemical Society, Vol. 162, Issue 5, pp.A5054âA5059, 2015.
[65] Roldan, S., M. Granda, R. Menendez, R. Santamaria, and C. Blanco, âMechanisms of energy storage in carbon-based supercapacitors modified with a Quinoid Redox-Active electrolyteâ, Journal of Physical Chemistry C, Vol. 115, Issue 35, pp.17606â11, 2011.
[66] Chen, L. B., H. Bai, Z. F. Huang, and L. Li, âMechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitorsâ, Energy & Environmental Science, Vol. 7, 5, pp.1750â59, 2014
[67] Zhang, S. W., B. S. Yin, X. X. Liu, D. M. Gu, H. Gong, and Z. B. Wang, âA high energy density aqueous hybrid supercapacitor with widened potential window through multi approachesâ, Nano Energy, Vol. 59, pp. 41â49, 2019
[68] Patil, A. M., X. W. An, S. S. Li, X. Y. Yue, X. Du, A. Yoshida, X. G. Hao, A. Abudula, and G. Q. Guan, âFabrication of three-dimensionally heterostructured rGO/WO3 center dot 0.5H(2)O@Cu2S electrodes for high-energy solid-state pouch-type asymmetric supercapacitorâ, Chemical Engineering Journal, Vol. 403, pp.17, 2021
[69] Hwang, J. Y., M. F. El-Kady, M. P. Li, C. W. Lin, M. Kowal, X. Han, and R. B. Kaner, âBoosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyteâ, Nano Today, Vol. 15, pp.15â25, 2017
[70] Chodankar, N. R., D. P. Dubal, A. C. Lokhande, A. M. Patil, J. H. Kim, and C. D. Lokhande, âAn innovative concept of use of redox-active electrolyte in asymmetric capacitor based on MWCNTs/MnO2 and Fe2O3 thin filmsâ, Scientific Reports, Vol. 6, pp. 39205, 2016
[71] Cui, Z., L. Wang, Q. Li, and K. Wang, âA comprehensive review on the state of charge estimation for lithium-ion battery based on neural networkâ, International Journal of Energy Research, pp. 1â18, 2021
[72] Yu Zhang , Han Hu , Zhiliang Wang , Bin Luo , Wei Xing , Li Li , Zifeng Yan , Lianzhou Wang, âBoosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancingâ, Nano Energy. Vol. 68, pp. 104226, 2020
[73] Yuan Wang, Hong Huang, Yingsen Fang, Hu Pan, Zhangfeng Shen, Yangang Wang, Xi Li, âEnhancement of Zn-ion hybrid supercapacitors by using dual redox-active ions electrolytesâ, Chemical Engineering Journal, Vol. 445, pp. 136796, 2022.
[74] Suo, L., O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, and K. Xu, âWater-in-salt electrolyte enables high-voltage aqueous lithium-ion chemistriesâ, Science, Vol. 350, Issue 6263, pp. 938â43, 2015.
[75] Suo, L., O. Borodin, Y. Wang, X. Rong, W. Sun, X. Fan, S. Xu, M. A. Schroeder, A. V. Cresce, F. Wang, et al., âWater-in-Salt electrolyte makes aqueous sodium-ion battery safe, green, and long-lastingâ, Advanced Energy Materials, Vol. 7, Issue 21, pp. 1701189, 2017.
[76] Hasegawa, G., K. Kanamori, T. Kiyomura, H. Kurata, T. Abe, and K. Nakanishi, âHierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitorsâ, Chemistry of Materials, Vol. 28, Issue 11, pp. 3944â50, 2016.
[77] Reber, D., R. S. Kuhnel, and C. Battaglia, âHigh-voltage aqueous supercapacitors based on NaTFSIâ, Sustainable Energy & Fuels, Vol. 1, Issue 10, pp. 2155â61, 2017.
[78] Gambou-Bosca, A., and D. BĂ©langer, âElectrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitorsâ, Journal of Power Sources, Vol. 326, pp. 595â603, 2016.
[79] Zhang, H., Chen, B., Banfield, J. F., and Waychunas, G. A, âAtomic structure of nanometer-sized amorphous TiO2. Physical Review B, Vol. 78, Issue 21, pp. 214106, 2018
[80] Fang Z., X. Jiang, X. Tian, F. Zheng, M. Cheng, E. Zhao, W. Ye, Y. Qin, and Y. Zhang, âUltratransparent PMN-PT electro-optic ceramics and its application in optical communicationâ, [J]. Advanced Optical Materials, Vol. 9, Issue 13, pp. 2002139, 2021.
[81] Wang, K., C. Liu, J. Sun, K. Zhao, L. Wang, J. Song, C. Duan, and L. Li, âState of charge estimation of composite energy storage systems with supercapacitors and lithium batteriesâ, Complexity Vol.20, pp.8816250, 2021a
[82] Wang, W., J. Pang, J. Su, F. Li, Q. Li, X. Wang, J. Wang, B. Ibarlucea, X. Liu, and Y. Li, et al, âApplications of nanogenerators for biomedical engineering and healthcare systemsâ, InfoMat. 2021.
[83] Wang, W. L., Y. H. Li, L. W. Li, L. C. Wang, and K. Wang, âSnO2/TiO2 nanocomposite prepared by pulsed laser deposition as anode material for flexible Quasi-solid-state lithium-ion batteriesâ, International Journal of Electrochemical Science, Vol. 15, Issue 12, pp. 11709â22, 2021
[84] Zhao, J. C., F. J. Li, Z. L. Wang, P. Dong, G. T. Xia, and K. Wang, âFlexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoringâ, Journal of Materials Science: Materials in Electronics, Vol. 32, Issue11, pp.14715â27, 2021
[85] Xu, H., H. Du, L. Kang, Q. Cheng, D. N. Feng, and S. Xia, âConstructing straight pores and improving mechanical properties of gangue-based porous ceramicsâ, Journal of Renewable Materials, Vol.9, Issue12, pp. 2129â41, 2021
[86] Thangavel, R.; Kaliyappan, K.; Kang, K.; Sun, X.; Lee, Y.-S, âGoing beyond lithium hybrid capacitors: Proposing a new highperforming sodium hybrid capacitor system for next-generation hybrid vehicles made with bio-inspired activated carbon. Adv.Energy Mater, Vol. 6, pp. 1502199, 2016.
[87] Zheng, Y.; Zhao, W.; Jia, D.; Liu, Y.; Cui, L.; Wei, D.; Zheng, R.; Liu, J, âPorous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode materialâ, Chem. Eng. J. , Vol. 387, pp.124161, 2020
[88] Zhang, C.; Xu, Y.; Du, G.; Wu, Y.; Li, Y.; Zhao, H.; Kaiser, U.; Lei, Y, âOxygen-functionalized soft carbon nanofibers as highperformance cathode of K-ion hybrid capacitorâ, Nano Energy, Vol. 72, pp. 104661, 2020
[89] Thangavel, R.; Kannan, A.G.; Ponraj, R.; Yoon, G.; Aravindan, V.; Kim, D.-W.; Kang, K.; Yoon, W.-S.; Lee, Y.-S, âSurface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durabilityâ, Energy Storage Mater, Vol. 25, pp. 702â713, 2020
[90] Xu, J.; Liu, Z.; Zhang, F.; Tao, J.; Shen, L.; Zhang, X, âBacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitorâ, RSC Adv, Vol. 10, pp. 7780â7790, 2020.
[91] Ruan, J.; Mo, F.; Chen, Z.; Liu, M.; Zheng, S.; Wu, R.; Fang, F.; Song, Y.; Sun, D, âRational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitorsâ, Adv. Energy Mater, Vol.10, pp. 1904045, 2020
[92] H. Zhang, X. Qin, J. Wu, Y.-B. He, H. Du, B. Li and F. Kang, J. Mater. Chem. A,Vol. 3, pp,7112-7120, 2015
[93] Narasimharao Kitchamsetti, Manopriya Samtham, Diwakar Singh, Ekta Choudhary, Sachin R. Rondiya , Yuan-Ron Ma e Russell W. Cross , Nelson Y. Dzade, Rupesh S. Devan, âHierarchical 2D MnO2@1D mesoporous NiTiO3 core-shell hybrid structures for high-performance supercapattery electrodes Theoretical and experimental investigationsâ, Journal of Electroanalytical Chemistry, Vol. 936, pp. 117359, 2023
[94] S. Chandra Sekhar, Goli Nagaraju, Bhimanaboina Ramulu, Sk. Khaja Hussain, D. Narsimulu, Jae Su Yu, Multifunctional core-shell-like nanoarchitectures for hybrid supercapacitors with high capacity and long-term cycling durabilityâ, Nano Research, Vol. 12, pp.2597â2608, 2019.
[95] Doha M. Sayed , Manar M. Taha, Loujain G. Ghanem, Mohamed S. El-Deab, Nageh K. Allam, âHybrid supercapacitors: A simple electrochemical approach to determine optimum potential window and charge balanceâ, Journal of Power Sources. Vol. 480, pp. 229152, 2020.
[96] Xiaoyu Bi, Meichun Li, Guoqiang Zhou, Chaozheng Liu, Runzhou Huang, Yang Shi, Ben Bin Xu, Zhanhu Guo, Wei Fan, Hassan Algadi & Shengbo Ge, âHigh-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathodeâ, Nano Research. Vol. 16, pp.7696â7709, 2023.
[97] Ziyue Zhao , Lidong Sun, Yu Li, Wei Feng, âPolymer-derived carbon materials for energy storage devices: A mini reviewâ, Carbon, Vol. 210, pp. 118066, 2023.
[98] Tianzhao Hu, Juan Li, Yuzuo Wang, Zhenhua Sun, Qun Xu, Feng Li, âCoupling between cathode and anode in hybrid charge storageâ, Joule. Vol. 7, Issue 6, pp. 1176-1205, 2023.
[99] Molahalli Vandana, Kiran Bijapur, Gowri Soman, Gurumurthy Hegde, âRecent advances in the development, design and mechanism of negative electrodes for asymmetric supercapacitor applicationsâ, Critical Reviews in Solid State and Materials Sciences, 2023
[100] Shivang Beniwal, Shivang Beniwal, Ankush Kumar, Ramesh Kumar, Atif Suhail, Monojit Bag, âTuning Conductivity of Lead-Free Cs2AgBiBr6 Double Perovskite Ternary Composite with PEDOT:PSS and Carbon Black for Supercapacitor Applicationâ, American Chemical Society(ACS) Publications, 2023
[101] Narasimharao Kitchamsetti, Daewon Kim, âHigh performance hybrid supercapacitor based on hierarchical MOF derived CoFe2O4 and NiMn2O4 composite for efficient energy storageâ, Journal of Alloys and Compounds. Vol. 959,pp. 170483, 2023
[102] A.G. Olabi, Tabbi Wilberforce, Enas Taha Sayed, Ahmed G. Abo-Khalil , Hussein M. Maghrabie, Khaled Elsaid, Mohammad Ali Abdelkareem, âBattery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmissionâ,; Energy. Vol. 254, Part A, pp. 123987, 2022
[103] KaranKamleshbhai Patel, Tushar Singhal, Varun Pandey, T.P. Sumangala, M.S. Sreekanth, âEvolution and recent developments of high performance electrode material for supercapacitors: A reviewâ, Journal of Energy Storage. Vol. 44, Part B, pp. 103366, 2021
[104] Krzysztof Fic, Sylwia Sroka, Przemyslaw Galek, Jakub Menzel, Anetta Platek-Mielczarek, âFundamentals and implication of PZC determination for activated carbons in aqueous electrolytesâ, Reaearch Square, 2023
[105] Doha M. Sayed a b, Manar M. Taha, Loujain G. Ghanem, , Mohamed S. El-Deab, Nageh K. Allam, â Hybrid supercapacitors: A simple electrochemical approach to determine optimum potential window and charge balanceâ, Journal of Power Sources Vol. 480,pp. 229152, 2020.
[106] Navid Saeidi, Falk Harnisch, Volker Presser, , Frank-Dieter Kopinke, Anett Georgi, âElectrosorption of organic compounds: State of the art, challenges, performance, and perspectivesâ, Chemical Engineering Journal. Vol. 471,pp. 144354. 2023
[107] Zambaga Otgonbayar , Sunhye Yang , Ick-Jun Kim , Won-Chun Oh, âRecent advances in 2D MXene and solid state electrolyte for energy storage applications: Comprehensive reviewâ, Chemical Engineering Journal.Vol. 472, pp. 144801, 2023
[108] Mohd Shoeb , Fouzia Mashkoor , Mohammad Naved Khan , Abdul Hakeem Anwer, Sharique Ahmad , Hoon Yi , Changyoon Jeong, âUnraveling the electrochemical properties and charge storage mechanisms of lactobacillusmediated synthesized RGO-titanium silver nanocomposite as a promising binder free electrode for asymmetric supercapacitor deviceâ, Journal of Alloys and Compounds . 964, 171188, 2023.
[109] Jun Feng, Natasha AChernova, M Stanley, âEffect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-on battery electrode and activated carbonâ, Journal of solid state Electrochemistry, Vol. 22, pp. 1063 â 1078, 2018.
[110] Tianzhao Hu, Juan Li, Yuzuo Wang, Zhenhua Sun, Qun Xu, Feng Li , â Coupling between cathode and anode in hybrid charge storageâ, Star Protocol, VOL. 7, ISSUE 6, PP. 1176-1205, 2023..
[111] .Xuena Xu , Yumin Qian, Chunting Wang, Zhongchao Bai, Chenggang Wang, Ming Song, Yi D, Xun Xu, Nana Wang, Jian Yang, Yitai Qian , Shixue Dou, âEnhanced charge transfer and reaction kinetics of vanadium pentoxide for zinc storage via nitrogen interstitial dopingâ, Chemical Engineering Journal, Vol. 451, Part 3, pp. 138770, 2023
[112] .Wenqi Yan, Yusong Zhu, Lili Liu, Lijun Fu, Yuhui Chen, Nengfei Yu, Yuping Wu, Bin Wang, Rui Xiao , âLi4Ti5O12 Coating on Copper Foil as Ion Redistributor Layer for Stable Lithium Metal Anodeâ, Advanced Energy Materials, Vol. 12, Issue 13 , pp. 2103112, 2022
[113] Guilin Tang, Xinyu Zhang, Bin Tian, Panwang Guo, Jing Liang, Wei Wu, âHollow heterogeneous CuSe @MnSe for high-performance pointed flexible supercapacitorâ, Chemeical engineering journal vol. 471,pp. 144590, 2023
[114] .Bingqiu Liu, Qi Zhang, Zhanshuang Jin, Lingyu Zhang, Lu Li, Zhigang Gao, Chungang Wang, Haiming Xie, Zhongmin Su ,âUniform Pomegranate-Like Nanoclusters Organized by Ultrafine Transition Metal Oxide@Nitrogen-Doped Carbon Subunits with Enhanced Lithium Storage Propertiesâ, Advanced Energy Materials. Vol. 8, Issue 7, 1702347, 2017
[115] . Irene Papiano, Simona De Zio, AndrĂ© Hofer, Marco Malferrari, Ignacio MĂnguez BachoJulien Bachmann, Stefania Rapino, Nicolas Vogel, Guilia Magnabosco ,âNature-inspired functional porous materials for low-concentration biomarker detectionâ, Materials Horizons, 2023
[116] .Bing Ding, Changzhou Yuan, Laifa Shen, Guiyin Xu, Ping Nie, Qingxue Lai, Xiaogang Zhang ,âChemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteriesâ, Journal of Material Chemistry A. DOI: https://doi.org/10.1039/C2TA00396A, 2012.
[117] .Vaishali Shrivastav ,Mansi,Bhavana Gupta ,Prashant Dubey ,Akash Deep, Wojciech Nogala ,Vishal Shrivastav, Shashank Sundriyal ,âRecent advances on surface mounted metal-organic frameworks for energy storage and conversion applications: Trends, challenges, and opportunitiesâ, Advances in Colloid and Interface Science. Vol.318, pp.102967, 2023
[118] .Xinru Tang, Nan Li, Huan Pang ,âMetal-organic Framework-derived metal phosphides for electrochemistry applicationsâ, Green Energy and Environment. Vol. 7, Issue 4,pp. 636-669, 2022.
[119] . M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C. P. Grey, B. Dunn , P. Simon ,â Efficient storage mechanisms for building better supercapacitorsâ, Nature Energy, pp. 16070, 2016
[120] Zhihong Bi, Qingqiang Kong, Yufang Cao, Guohua Sun, Fangyuan Su, Xianxian Wei, Xiaoming Li, Aziz Ahmad, Lijing Xie, Cheng-Meng Chen, âBiomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a reviewâ, Journal of Materials Chemistry A. DOI: https://doi.org/10.1039/C9TA04436A, 2019
[121] Zhongling Cheng, Hao Jiang, Xinlin Zhang, Fangyi Cheng, Minghong Wu, Haijiao Zhang , âFundamental Understanding and Facing Challenges in Structural Design of Porous Si-Based Anodes for Lithium-Ion Batteriesâ, Advanced Functional Materials. Vol. 33, Issue 26, pp. 2301109, 2023.
[122] .Ting Jin, Qingqing Han, âBinder-Free Electrodes for Advanced Sodium-Ion Batteriesâ Advanced Materials. Vol. 32, 3, pp. 1806304, 2019
[123] . Pengfei Hao, Ting Zhu, Qiong Su, Jiande Lin, Rong Cui, Xinxin Cao, Yaping Wang, and Anqiang Pan, âElectrospun Single Crystalline Fork-Like K2V8O21 as High-Performance Cathode Materials for Lithium-Ion Hybrid Supercapacitorâ, PMID: pp. 29911101, 2023
[124] .Zhang, X.; Pei, Z.; Wang, C.; Yuan, Z.; Wei, L.; Pan, Y.; Mahmood, A.; Shao, Q.; Chen, Y. âFlexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronicsâ, Small, Vol. 15, pp. 1903817, 2019.
[125] .Hu, X.; Zhong, G.; Li, J.; Liu, Y.; Yuan, J.; Chen, J.; Zhan, H.; Wen, Z. âHierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitorâ, Energy Environ. Sci. Vol. 13,pp. 2431â2440, 2020
[126] .Yang, D.; Zhao, Q.; Huang, L.; Xu, B.; Kumar, N.A.; Zhao, X.S. âEncapsulation of NiCo2O4 in nitrogen-doped reduced grapheme oxide for sodium ion capacitorsâ, J. Mater. Chem. A , Vol. 6, pp. 14146â14154. 2019
[127] .Yi, Y.; Sun, Z.; Li, C.; Tian, Z.; Lu, C.; Shao, Y.; Li, J.; Sun, J.; Liu, Z.â Designing 3D biomorphic nitrogen-doped MoSe2/grapheme composites toward high-performance potassium-ion capacitorsâ, Adv. Funct. Mater., Vol.30, pp. 1903878, 2020
[128] .Zhan, C.; Liu, W.; Hu, M.; Liang, Q.; Yu, X.; Shen, Y.; Lv, R.; Kang, F.; Huang, Z.-H. âHigh-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: Surpassing the performance of lithium-ion capacitors in a uniform systemâ, NPG Asia Mater. Vol.10, pp. 775â787, 2018.
[129] .Lei Wen, Feng Li, Hui-Ming Cheng, âCarbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devicesâ, Advanced Materials. Vol. 28, Issue 22, pp. 4306-4337, 2016
[130] .Eunji Choi, Dr. Ohchan Kwon, Choong Hoo Lee, Prof. Dae Woo Kim, âMetal-Organic Framework Membrane Hybridized with Graphitic Materials for Gas Separationâ, European Chemical Societies Publishing. Vol.88, Issue 8, pp. 202300173, 2023.
[131] .Moumita Kotal, Sonu Jakhar, Sandipan Roy, Harish K. Sharma ,âCathode materials for rechargeable lithium batteries: Recent progress and future prospectsâ, Journal of Energy Storage..Vol. 47, pp. 103534, 2021.
[132] . Chen Chen, Ying Huang, Mengwei Lu, Jiaxin Zhang, Tiehu Li, âTuning morphology, defects and functional group types in hard carbon via phosphorus doped for rapid sodium storageâ, Carbon. Vol. 183, pp. 415-427, 2021.
[133] .Yu Yuan 1, Ziwei Chen 1, Haoxiang Yu, Xikun Zhang, Tingting Liu, Maoting Xia, Runtian Zheng, Miao Shui, Jie Shu; âHeteroatom-doped carbon-based materials for lithium and sodium ion batteriesâ, Energy Storage Materials. Vol. 32, pp. 65-90, 2020.
[134] . Guohao Li, Brian C. Wyatt, Fei Song, Changqiang Yu, Zhenjun Wu, Xiuqiang Xie, Babak Anasori, â2D Titanium Carbide (MXene) Based Films: Expanding the Frontier of Functional Film Materialsâ, Advanced Functional Materials. Vol. 31, Issue 46, 2105043, 2021.
[135] . Somnath R. Khaladkar, Oshnik Maurya, Girish Gund, Bhavesh Sinha, Deepak Dubal, R.R. Deshmukh, Archana Kalekar, âImproving the charge kinetics through in-situ growth of NiSe nanoparticles on g-C3N4 nanosheets for efficient hybrid supercapacitorsâ, Journal of Energy Chemistry, Vol. 87, pp. 304-313, 2023
[136] . Hua Zhang , âUltrathin Two-Dimensional Nanomaterialsâ, ACS Nano . Vol. 9, Issue 10, pp. 9451â9469, 2015
[137] .Chao Han, Xinyi Wang, Jian Peng, Qingbing Xia, Shulei Chou, Gang Cheng, Zhenguo Huang, Weijie Li âRecent Progress on Two-Dimensional Carbon Materials for Emerging Post-Lithium (Na+, K+, Zn2+) Hybrid Supercapacitorsâ,Polymers. Vol. 13, Issue 13, pp. 2137, 2022.
[138] . Harikrishnan M.P, A. Chandra Bose ,âRecent Advances and Future Perspectives of VS4 and Its Nanostructure Composites for Supercapacitor Applications: A Reviewâ, Energy Fuels Vol. 37, Issue 15, 10799â10826, 2023.
[139] . Ebenezer Dotun Adelowo ,âLithium-ion hybrid capacitor Devices: Towards High-performance electrochemical capacitive Energy storageâ, Plumx Metrics , 2020
[140] . Rasmita Barik, Pravin P Ingole, âChallenges and Prospects of metal sulfide materials for supercapacitorsâ , Current opinion in Electrochemistry Vol. 27, pp. 327-334, 2020
[141] . Yu Zhang, Han Hu, Zhilang Wang, Bin Luo, We Xing, Li li, Zifeng Yang, Lianzhou Wang , âBoosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancingâ, Nano Energy Vol. 68, pp. 104226, 2020.
[142] . Mingfei Gao, Zhoughe Han, Ce Zhang, Peng Li, Di Wu ,âOptimal configuration for regional integrated Energy systems with Multi-element hybrid energy storageâ, Energy, Vol. 277, pp. 127672, 2023.
[143] . Asad U R, Amir M A, Muhammad W I, Muhammad A, Saikh M W, Essan A A, Sohail M, Eun H C. âHighly Efficient and stable Layered AgZnS@WS2 Nano composite electrode as superior charge transfer and active redox sites for energy harvesting devices â ,Journal of Energy Storage , Vol. 71, pp. 108022, 2023.
[144] . Martin Winter, Ralph J Brodd, âwhat are batteries, Fuel cells, and Supercapacitors?â , Chemical reviews, Vol. 104, Issue10, pp. 4245-4270, 2004
[145] .. Linpo Li, Wenyi Liu, Haoyang Dong, âQiuyue Gui, Zuoqi Hu, Yuanguan Li, Jinping Liu, âSurface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devicesâ, Advanced Materials Vol. 33, Issue 13, pp. 2004959, 2023.
[146] . Sucheng Liu, He Zhu, Binghao Zhang, Gen Li, Hekang Zhu, Yang Ren, Hongbo Geng, Yang Yang, Qi Liu, Cheng Chao Li , âTurning the kinetics of Zinc-ion insertion Extraction in V2O5 by insitu polyaniline intercalation Enables improved Aqueous Zinc-ion storage Performanceâ , Advance Materials Vol. 32, Issue 26, pp. 2001113, 2020.
[147] . Theodoor A Hendriks, Martin A Lange, Ellen M Kiens, Christopher Baeumer, Wolfgang G Zeier, âBalancing partial ionic and electronic transport for optimized cathode utilization of High-voltage LiMn2O4 / LiInCl6 solid state batteriesâ ,Batteries and supercapacitors Vol. 6, Issue 4, pp. e202200544, 2023.
[148] . Tapan Dey, Asia Dial, Peter R Corridou, Sai Kat Dutt, âBiosupercapacitors with minimized self-Discharge, âChemical Engineering Journal, pp. 144101, 2023.
[149] . Peng Cai, Konli Wang, Jing Ning, Xin He, Manlin Chen, Qixing Li, Haomiao Li, Min Zhou, Wei Wang, Kaijiang, âAdvanced insitu induced Dual-mechanism Heterointerface Towards ultrstable Aqueous Rocking-chair Zinc-ion Batteriesâ, Advanced Energy materials Vol. 12, Issue 41, pp. 2202182, 2022.
[150] . Ranjit S Kate, Suraj A Khalate, Ramech J Deokate, â Overview of nanostructured Metal Oxides and pure nickel oxide (NiO) electrodes for supercapacitors; A reviewâ, Journal of Alloys and compounds Vol. 734, pp. 89-111, 2018.
[151] . Chong Yan, Rui Xu, Ye Xiao, Jun-Fan Ding, Lei Xu, Bo-Quan Li, Jia- Qi Huang, âToward Critical electrode/electrolyte interface in rechargeable batteriesâ, Advanced Functional materials, Vol. 30, Issue 23, pp. 1909887, 2020.
[152] . Mingle Wu, Gaixia Zhang, Lei Du, Dachi Yang, Huaming Yang, Shuliui Sun, âDefect Electro-catalysts and Alkaline Electrolyte Membranes in solid-state Zinc-Air Batteries: Recent Advances, Challenges, and Future Perspectivesâ, Small Methods Vol. 5, Issue 1, pp. 2000 868, 2021.
[153] . Ningshengjie Gao, Sangwook Kim, Parameswara Chinnam, Eric J Dufe K, Andrew M Colclasure, Ira Bloom, Alison Dunlop, Stephen Trask, Kelvin Gering, âMethodologies for design, characterization and testing of electrolytes that enable extreme fast charging of lithium-ion cellsâ, Energy storage materials, Vol. 44, pp. 296-312, 2022.
[154] . Bhupender Pal, Shengyuan Yang, Subramaniam Ramesh, Venkataraman Thangadurai, Rajan Jose, âElectrolyte selection for supercapacitive devices:A critical reviewâ, Nanoscale Advances. pp. 13807, 2019.
[155] . Arpit Mendhe, H. S. Panda (2023), A review on electrolytes for supercapacitor device, Discover Materials,Vol. 3, pp. 29, 2023.
[156] . D. Jimenez-Cordero, F. Heras, M. A. Gilarranz and E. Raymundo-Pinero, Carbon, Vol. 71, pp. 127-138, 2014.
[157] . B. S. Mao, Z. H. Wen, Z. Bo, J. B. Chang, X. K. Huang and J. H. Chen, ACSAppl. Mater. Inter, Vol. 6, pp. 9881-9889, 2014.
[158] . N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, J. Y. Choi and J. S. Park, Adv. Mater, Vol. 25, pp. 6854-6858, 2014
[159] . M. Gali?ski, A. Lewandowski and I. St?pniak, Electrochim. Acta,Vol. 51, pp. 5567-5580, 2006.
[160] . A. Balducci, F. Soavi and M. Mastragostino, Applied Physics A: Materials Science and Processing, Vol. 82, pp. 627-632, 2006.
[161] . Yumak T, Bragg D, Sobolsky E M. âEffect of synthesis methods on the surface and electrochemical characteristics of metal oxide activated carbon composites for supercapacitor applicationâ, Applied surface science, Vol. 469, pp. 983-993, 2019.
[162] . Omar N, Abdullah E C, Numan A, Mubarak N M, Khalid M, Aid S R, Agudosi E S, âFacile synthesis of a binary composite from water melon ring using response surface methodology for supercapacitor electrode materialsâ, Journal of Energy Storage,Vol. 49, pp. 104147, 2022.
[163] . Fenghua Guo, Nivedita Gupta and Xiaowei Teng, âEnhancing Pseudocapacitive Process for Energy Storage Devices, Analyzing the Charge Transport Using Electro-kinetic Study and Numerical Modeling, pp. 73680, 2018
[164] . Corti, F.; Gulino, M.-S, Laschi, M.; Lozito, G.M.; Pugi, L, Reatti, A.; Vangi, D. âTime-Domain Circuit Modelling for Hybrid Supercapacitorsâ, Energies, Vol. 14, pp. 6837, 2021.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.