Full Paper View Go Back
Characterization and Wet Chemical Synthesis of Magnesium Tartrate Nano Particles
U.M. Lathiya1 , M.J. Joshi2 , P.M. Vyas3
Section:Research Paper, Product Type: Journal-Paper
Vol.12 ,
Issue.2 , pp.26-33, Apr-2024
Online published on Apr 30, 2024
Copyright © U.M. Lathiya, M.J. Joshi, P.M. Vyas . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: U.M. Lathiya, M.J. Joshi, P.M. Vyas, “Characterization and Wet Chemical Synthesis of Magnesium Tartrate Nano Particles,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.12, Issue.2, pp.26-33, 2024.
MLA Style Citation: U.M. Lathiya, M.J. Joshi, P.M. Vyas "Characterization and Wet Chemical Synthesis of Magnesium Tartrate Nano Particles." International Journal of Scientific Research in Physics and Applied Sciences 12.2 (2024): 26-33.
APA Style Citation: U.M. Lathiya, M.J. Joshi, P.M. Vyas, (2024). Characterization and Wet Chemical Synthesis of Magnesium Tartrate Nano Particles. International Journal of Scientific Research in Physics and Applied Sciences, 12(2), 26-33.
BibTex Style Citation:
@article{Lathiya_2024,
author = {U.M. Lathiya, M.J. Joshi, P.M. Vyas},
title = {Characterization and Wet Chemical Synthesis of Magnesium Tartrate Nano Particles},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {4 2024},
volume = {12},
Issue = {2},
month = {4},
year = {2024},
issn = {2347-2693},
pages = {26-33},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3468},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3468
TI - Characterization and Wet Chemical Synthesis of Magnesium Tartrate Nano Particles
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - U.M. Lathiya, M.J. Joshi, P.M. Vyas
PY - 2024
DA - 2024/04/30
PB - IJCSE, Indore, INDIA
SP - 26-33
IS - 2
VL - 12
SN - 2347-2693
ER -
Abstract :
Magnesium tartrate is having application in purgative and food supplement formulations. Magnesium tartrate nanoparticles are obtained by employing the wet chemical method. Aqueous solutions of MgCl2, tartaric acid, and sodium metasilicate (SMS) solutions are added together in the presence of Triton X-100 surfactant in the desired manner. The SMS helps in the formation of magnesium tartrate products. The powder XRD analysis indicates the orthorhombic nature of the magnesium tartrate nano-particles with the 40.35 nm average crystallite size from Scherrer`s method and 10.90 nm from the W-H (Williamson-Hall) method. The particle size and the morphology of nano-particles are studied by using TEM. The FTIR spectrum confirms the functional groups, viz., C-H, O-H, and C=O in the sample. TGA indicates the thermal stability up to 213o C and then decomposition occurs via different stages. The dielectric analysis is reported on the pellet form of the sample within the range of frequency from 10 Hz to 10 MHz and temperature from 303K to 363K. The variation in both dielectric constant and dielectric loss along with the frequency of applied field suggests decreasing nature in the values as the frequency increases. However, the reverse trend is displayed for the A.C. conductivity with increasing frequency. Various parameters are evaluated from Jonscher’s power law and the CBH (Correlated Barrier Hopping) model for A.C. conductivity is suggested from the analysis.
Key-Words / Index Term :
Magnesium tartrate nanoparticles, powder XRD, TEM, FTIR, TGA, Dielectric Properties.
References :
[1] H. K. Henisch, J. Dennis, J. I. Hanoka, “Crystal growth in gels”, Journal of Physics and Chemistry of Solids, Vol. 26, Issue 3, pp. 493-496, 1965 . https://doi.org/10.1016/0022-3697(65)90123-X
[2] P. M. Vyas, H. O. Jethva, S. J. Joshi, M. J. Joshi, “The roles of gel medium and gelling solution in the growth of the crystals: A case study of calcium levo-tartrate”, Archives of Physics Research, Vol. 4, Issue 6, pp. 9-15, 2013
[3] U. V. Tarpara, P. M. Vyas, M. J. Joshi, “Synthesis and characterization of calcium tartrate dehydrate nanoparticles”, International Journal of Nanoscience, Vol.14, Issue3, pp.1550013(1)-1550013(6), 2015. https://doi.org/10.1142/S0219581X15500131
[4] S. J. Joshi, K. P. Tank, P. M. Vyas, M. J. Joshi, “Structural, FTIR, thermal and dielectric studies of gel grown manganese–copper mixed levo tartrate crystals”, Journal Crystal Growth, Vol. 401, pp. 210-214, 2014 Doi.10.1016/ j. crysgro.2014.01.060
[5] H. O. Jethva, P. M. Vyas, K. P. Tank, M. J. Joshi, “FTIR and thermal studies of gel-grown, lead–cadmium-mixed levo tartrate crystals”, Journal of Thermal Analysis and Calorimetry, Vol. 117, pp. 589-594 2014 Doi.10.1007/s 10973-014-3770-1
[6] R. M. Dabhi, B. B. Parekh, M. J. Joshi, “Dielectric studies of gel grown zinc tartrate crystals”, Indian Journal of Physics, Vol. 79, Issue 5, pp. 503-507, 2005
[7] V. S. Joshi, M. J. Joshi, “FTIR spectroscopic and thermal studies of calcium tartrate trihydrate crystals grown by gel assistance”, Indian Journal of Physics. 75A, Issue 2 pp. 159-163, 2001
[8] S. Joseph, H. S. Joshi, M. J. Joshi, “Infrared spectroscopic and thermal studies of gel grown spherulitic crystals of iron tartrate”, Crystal Research & Technology, Vol. 32, Issue 2, pp. 339-346, 1997
[9] U. M. Lathiya, H. O. Jethva, P. M. Vyas, M. J. Joshi, “Powder XRD, TEM, FTIR and thermal studies of strontium tartrate nano particles”, Functional Oxides and Nanomaterials, American Institute of Physics, AIP Conf Proceed 1837, pp. 040015(1)-040015(3) 2017 Doi.10.1063/1:4982099
[10] K. C. Kam, K. L. M. Young, A. K. Cheetham, “Chemical and Structural Diversity in Chiral Magnesium Tartrates and their Racemic and Meso Analogues”, Crystal Growth & Design, Vol. 7, Issue 8, pp. 1522-1532, 2007 DOI: 10.1021/cg070388a
[11] K. K. Ghara, P. Maiti, P. K. Ghosh, “Correlation of Filtration Behavior of Chiral and Racemic Mg(tartrate) Suspensions with Morphological Differences and Observation of Cross Structure in a Metal Organic Framework”, Industrial & Engineering Chemistry Research,Vol. 54, Issue 13, pp. 3320-3325, 2015 DOI: 10.1021/ie5047973
[12] L. S. Jacob, T. J. Williams, R. D. Krell, “Non-aqueous colonic purgative formulations”, Patent, EP0934071 A4 oct. 8, 1998
[13] L. W. Coleman, “Laser Program Overview, Laser program Annual Report”, Lawerence Livermose National Lab, UCRL – 50021 – 87, 1987
[14] M. S. Mastuli, N. S. Ansari, M. A. Nawawi, A. M. Mahat, “Effects of cationic surfactant in sol-gel synthesis of nano sized magnesium oxide”, Elsevier B.V. Selection and/or peer review under responsibility of Asia-Pacific Chemical, Biological & Environmental Engineering Society ,APCBEE Procedia, Vol. 3, pp. 93-98, 2012 https://doi.org/10.1016/j.apcbee.2012.06.052
[15] R. Jaffe, “Enhancement of magnesium uptake in mammals”, US Patent, 8017160B2, sep. 13,2011
[16] P. C. Hllson, G. A. Rose, In P. O. Schwille, L. H. Smith, W. G. Robertson, W. Vahlensieck, “The additive effects of magnesium and tartrate upon inhibition of calcium oxalate crystal formation in whole urine”, eds, Urolithiasisand Related Research, Springer , Boston, USA, Vol. 62, Issue 1 pp. 17-19, 1982
[17] Z. Hui, C. Cui – Yuan, O. Jian – Ming, “Modulation of Magnesium Tartrate on Crystal Growth of Hydrate Calcium Oxalates”, Chemical Journal of Chinese Universities -Chinese Edition, Vol. 27, Issue 7, pp. 1220-1222, 2006
[18] M. P. Dave, S. A. Gandhi, V. Joshi, “Powder XRD and FTIR Study of Magnesium Levo-Tartrate”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Issue 1, pp. 1020-1026, 2016
[19] K. K. Ghara, N. Korat, D. Bhalodiya, J. Solanki, P. Maiti, P. K. Ghosh, “Production of pure potassium salts directly from sea bittern employing tartaric acid as a benign and recyclable K+ precipitant”, RSC Advances, Vol. 4, Issue 65, pp. 34706-34711, 2014, DOI:10.1039/C4RA04360J
[20] P. Solanki, S. Vasant, M. Joshi, “Synthesis, crystal structure, spectroscopic and thermal analysis of strontium pyrophosphate dihydrate nanoparticles”, International Journal of Applied Ceramic Technology, Vol.11, Issue.4, pp.663-669, 2014 https://doi.org/10.1111/ijac.12227
[21] T. P. Yendrapati, V. R. Kalagadda, S. S. Vemula, S. Bandla, “X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation”, World Journal of Nano Science and Engineering, Vol. 4, Isuue 1, pp. 21-28, 2014, DOI:10.4236/wjnse.2014.41004
[22] S. Kurien, “Structural and Electrical Properties of Certain Nanocryatalline Aluminates”, Ph. D. Thesis, Dept. of St. Berchmans College, Mahatma Gandhi University, Kerala 2005
[23] K. P. Tank, “Synthesis characterization and inhibition study of pure and doped nano-apatites”, Ph. D. Thesis, Dept. of physics, Saurashtra University, Rajkot, Gujrat, 2013
[24] N. Colthup, L. Daly, S. Wiberly, “Introduction to Infrared and Raman Spectroscopy” 3rd Edition, Elsevier Publisher, Academic Press 1990, ISBN: 9780080917405
[25] C. B. Mohmed, K. Karoui, S. Saidi, K. Guidara, A. B. Rhaiem, “Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4 compound”, Physica B, Vol.451, pp.87-95, 2014 DOI:http://dx.doi.org/10.1016/j.physb.2014.06.006.
[26] M. A. Fakhree, D. R. Delgado, F. Martinez, A. Jouyban, “The Importance of dielectric Constant for drug solubility prediction in binary solvent mixtures: electrolytes and zwitterions in water+ethanol”, AAPS Pharm. Sci. Tech., Vol. 11, Issue 4, pp. 1726-1729, 2010 DOI: 10.1208/s12249-010-9552-3
[27] J. F. Riordan, “The role of metals in enzyme activity”, Annals of clinical and Laboratory Science, Vol. 7, Issue 2, pp. 119-129, 1977
[28] E. L. Mertz, L. I. Kristalik, “Low dielectric response in enzyme active site”, Proceedings of the National Academy of Sciences, USA. Vol. 97, Issue 5, pp. 2081-2086, 2000 https://doi.org/10.1073/pnas.050316997
[29] S. R. Vasant, “Synthesis and characterization of pure and doped calcium pyrophosphate nano-particles”, Ph. D. Thesis, Dept. of physics, Saurashtra University, Rajkot, Gujrat, 2015
[30] S. K. Arora, V. Patel, B. Amin, A. Kothari, “Dielectric behaviuor of strontium tartrate single crystals”, Bulletin of Materials Science, Vol. 27, Issue 2, pp. 141-147, 2004 DOI:10.1007/BF02708496
[31] S. K. Arora,T. Mathew, “Dielectric studies of CuWO4 crystals”, Physica Status Solidi A, Vol. 116, Issue 1, pp. 405-413 1989 https://doi.org/10.1002/pssa.2211160141
[32] G. K. Solanki, D. B. Patel, K. D. Patel, N. N. Gosai, Y. G. Mansur, “Growth and dielectric properties of DVT grown GeS0.25Se0.75 single crystals”, Physical Chemistry., Vol. 2, Issue 5, pp. 67-72, 2012 DOI: 10.5923/j.pc.20120205.02
[33] M. D. Shah, B. Want, “Growth, characterization and dielectric studies of gadolinium fumarate heptahydrate single crystals”, Bulletin of Material Science, Vol. 38, Issue 1, pp. 73-81, 2015
[34] J. H. Joshi, D. K. Kanchan, H. O. Jethva, M. J. Joshi, K. D. Parikh, “Dielectric relaxation, protonic defect, conductivity mechanisms, complex impedance and modulus spectroscopic studies of pure and L-threonine-doped ammonium dihydrogen phosphate”, Ionics, Vol. 24, Issue 2, pp. 1995-2016, 2018 Doi.10.1007/511581-018,2461-2
[35] Z. Imran, M. A. Rafiq, M. Ahmad, K. Rasool, S. S. Batool, M. M. Hasan, “Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats”, AIP Advances, Vol. 3, pp .032146(1)-032146(13), 2013 https://doi.org/10.1063/1.4799756
[36] B. D. Shrivastav, R. Barde, A. Mishra, S. Phadake, “Frequency and Temperature Dependence of Dielectric Properties of Fish Scales Tissues”, Research Journal of Physical Science, Vol. 1, Issue 6, pp. 24-29, 2013
[37] N. H. Manani, H. O. Jethva, M. J. Joshi “Dielectric Relaxation, Conductivity Mechanism and Complex Impedance Spectroscopic Studies of Pure and Cadmium Mixed Cobalt Levo-Tartrate Crystals”, International Journal of Scientific Research in Physics and Applied Sciences, Vol. 8, Isuue 1, pp. 8-15, 2020 DOI:10.26438/ijsrpas/v8i1.815
[38] A. I. Osetskii, “Low?temperature fluctuational motion of dislocations in crystals I. Quantum and dissipative effects”, Physica Status Solid: B, Vol. 117, Issue 1, pp. 355-365, 1983. https://doi.org/10.1002/pssb.2221170140
[39] J. Friedel, “Dislocation: International Series of Monographs on Solid State Physics”, first edition, Elsevier Publisher, 1964 ISBN: 9781483135922
[40] M. N. Kamalasanan, N. D. Kumar, S. Chandra, “Dielectric and ferroelectric properties of BaTiO3 thin films grown by the sol?gel process”, Journal of Applied Physics, Vol. 74, Issue 9, pp. 5679-5686, 1993 https://doi.org/10.1063/1.354183
[41] A. K. Jonscher, “The universal dielectric response”, Nature, Vol. 267, pp. 673-679, 1977, DOI:10.1038/267673a0
[42] J. O. L`opez, R. G. Aguilar, “Dielectric permittivity and AC conductivity in polycrystalline and amorphous C60”, Revista Mexicana de Fisica, Vol. 49, Issue 6, pp. 529-536, 2003.
[43] H. Mahamoud, B. Louati, F. Hlel, K. Guidara, “Conductivity and dielectric studies on (Na 0·4Ag 0·6)2PbP2O7 compound”, Bulletin of Material Science, Vol. 34, Issue 5, pp. 1069-1075, 2011
[44] M. J. Joshi, “Opportunities, challenges and pathways of nano-medicines: a concise review”, Journal of Nanomedicine Research, Vol. 1, Issue 2, pp. 63-64, 2014, DOI: 10.15406/jnmr.2014.01.00013
[45] M. J. Joshi, “Interdisciplinary approach to nano – crystalline active pharmaceutical ingredients: a brief review”, International Journal of ChemTech Research., Vol. 6, Issue 3, pp. 1800-1802, 2014
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.