Full Paper View Go Back
Janmejay Yadav1 , Vikram Singh2 , Ram Kripal3 , Rajesh Kumar Yadav4 , Urvashi Srivatava5
- Dept. of Physics, Nehru Gram Bharati (Deemed to be University), Jamunipur, Prayagraj, India.
- Dept. of Physics, Nehru Gram Bharati (Deemed to be University), Jamunipur, Prayagraj, India.
- EPR Laboratory, Department of Physics, University of Allahabad, Prayagraj, India.
- Dept. of Physics, CMP Degree College, University of Allahabad, Prayagraj, India.
- Dept. of Home Science, Prof. Rajendra Singh (Rajju Bhaiya) University Prayagraj, India.
Section:Research Paper, Product Type: Journal-Paper
Vol.13 ,
Issue.1 , pp.7-15, Feb-2025
Online published on Feb 28, 2025
Copyright © Janmejay Yadav, Vikram Singh, Ram Kripal, Rajesh Kumar Yadav, Urvashi Srivatava . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Janmejay Yadav, Vikram Singh, Ram Kripal, Rajesh Kumar Yadav, Urvashi Srivatava, âSynthesis, Characterization and Antimicrobial Properties of Manganese Doped Zinc Sulphide Nanoparticles,â International Journal of Scientific Research in Physics and Applied Sciences, Vol.13, Issue.1, pp.7-15, 2025.
MLA Style Citation: Janmejay Yadav, Vikram Singh, Ram Kripal, Rajesh Kumar Yadav, Urvashi Srivatava "Synthesis, Characterization and Antimicrobial Properties of Manganese Doped Zinc Sulphide Nanoparticles." International Journal of Scientific Research in Physics and Applied Sciences 13.1 (2025): 7-15.
APA Style Citation: Janmejay Yadav, Vikram Singh, Ram Kripal, Rajesh Kumar Yadav, Urvashi Srivatava, (2025). Synthesis, Characterization and Antimicrobial Properties of Manganese Doped Zinc Sulphide Nanoparticles. International Journal of Scientific Research in Physics and Applied Sciences, 13(1), 7-15.
BibTex Style Citation:
@article{Yadav_2025,
author = {Janmejay Yadav, Vikram Singh, Ram Kripal, Rajesh Kumar Yadav, Urvashi Srivatava},
title = {Synthesis, Characterization and Antimicrobial Properties of Manganese Doped Zinc Sulphide Nanoparticles},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {2 2025},
volume = {13},
Issue = {1},
month = {2},
year = {2025},
issn = {2347-2693},
pages = {7-15},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3800},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=3800
TI - Synthesis, Characterization and Antimicrobial Properties of Manganese Doped Zinc Sulphide Nanoparticles
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - Janmejay Yadav, Vikram Singh, Ram Kripal, Rajesh Kumar Yadav, Urvashi Srivatava
PY - 2025
DA - 2025/02/28
PB - IJCSE, Indore, INDIA
SP - 7-15
IS - 1
VL - 13
SN - 2347-2693
ER -




Abstract :
This paper focuses on the controlled size of manganese-doped zinc sulfide nanocrystalline powders made via an easy-to-understand aqueous chemical procedure that eliminates the requirement for a capping agent. It was examined by the size of the ZnS nanoparticles was exaggerated by varying calcination temperatures. Rendering to W-H analysis, ZnS nanoparticles` average crystallite size rose as the calcination temperature rose Spectroscopy of UV-vis in diffused reflectance (DR) mode was employed to analyze optical properties, It demonstrated a notable reflective feature at 420 nm at 500 ?C calcination temperature and a sharp rise in reflectivity at 375 nm. Morphology and elemental compositions were investigated via transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As the calcination temperature was elevated, ZnS nanoparticles` average crystallite size grew in accordance with Scherrer`s formula and W-H analysis. UVâvis spectroscopy in diffused reflectance (DR) mode was employed to analyze optical properties, which, at 500 ?C calcination temperature, had a notable reflective characteristic after 420 nm and a sharp rise in reflectivity at 375 nm. In comparison with pure ZnS NPs, Mn-doped ZnS (15 mol%) NPs shown greater antibacterial activity against Shigellaflexneri, Salmonella typhi, E. coli, and Staphylococusaureus.
Key-Words / Index Term :
Mn-doped nanoparticles, zinc sulfide, Scherrer`s equation, Transmission electron microscopy, Antibacterial activity, nanoparticles
References :
[1] L.Chen, Y.Shang, J. Xu, H. Liu, & Y. Hu,âSynthesis of ZnSnanospheres in microemulsion containing cationic gemini surfactant.â J DisperSciTechnol, Vol.27, No.6, pp.839-842, 2006.
[2] J. Wen, & G. L. Wilkes, âOrganic/inorganic hybrid network materials by the sol? gel approach.â Chem. Mater, Vol.8, No.8, pp.1667-1681, 1996.
[3] M. Miyake, T. Torimoto, M. Nishizawa, T.Sakata, H. Mori, & H. Yoneyama , âEffects of surface charges and surface states of chemically modified cadmium sulfide nanoparticles immobilized to gold electrode substrate on photoinduced charge transfers.â Langmuir, Vol.15,No.8, pp.2714-2718,1999.
[4] S. K. Mandal, S. Chaudhuri, & A. K. Pal, âOptical properties of nanocrystallineZnS films prepared by high pressure magnetron sputtering.â Thin Solid Films, Vol.350,No.1-2, pp.209-213, 1999.
[5] R. Thielsch, T. Böhme, ,& H. Böttcher, âOptical and Structural Properties of Nanocrystalline ZnS?SiO2 Composite Films.â physica status solidi (a), Vol.155,No.1, pp.157-170 ,1996.
[6] A.TOM?A, E. J. Popovici, A.CADI?, M. ?TEFAN, L. Barbu-Tudoran, & S. A?TILEAN, âUltrasound-assisted synthesis of highly disperse zinc sulphide powders.â J. Optoelectron. Adv. M., Vol.10, No.9, pp.2342-2345, 2008.
[7] B. Bhattacharjee, D. Ganguli, S. Chaudhuri, & A. K. Pal, âZnS: Mnnanocrystallites in SiO2 matrix: preparation and properties. Thin solid films,â Vol.422,No.1-2, pp.98-103,2002.
[8] P. BalĂĄĆŸ, E.BoldiĆŸĂĄrovĂĄ, E.Godo???kovĂĄ& J. Brian?in, Mechanochemical route for sulphide nanoparticles preparation. Mater Lett. Vol.57,No.9-10, pp.1585-1589, 2003.
[9] J. C. Sanchez-Lopez, & A. Fernandez, âThe gas-phase condensation method for the preparation of quantum-sized ZnS nanoparticles.â Thin Solid Films, Vol.317,No.1-2, pp.497-499, 1998.
[10] J. F. Suyver, S. F. Wuister, J. J. Kelly, & A. Meijerink, âSynthesis and photoluminescence of nanocrystallineZnS: Mn2+â. Nano Lett., Vol.1, No.8, pp.429-433. 2001.
[11] W. Sang, Y. Qian, J. Li D. Min, L.Wang, W.Shi, & L. Yinfeng, âMicrostructural and optical properties of ZnS: Cu nanocrystals prepared by an ion complex transformation method.â Solid State Commun." , Vol.12,No.9-10, pp.475-478, 2002.
[12] Y.Jiang, & Y. J. Zhu, âMicrowave-assisted synthesis of nanocrystalline metal sulfides using an ionic liquid.â ,Chem.Lett., Vol.33, No.10, pp.1390-1391,2004.
[13] H.J. Bai, Z. M. Zhang, & J. Gong, âBiological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobactersphaeroides,â Biotechnol.lett, Vol.28, pp.1135-1139, 2006.
[14] L. N. Maskaeva, M. A. Lysanova, O. A. Lipina, V. I Voronin, E. A .Kravtsov, A. V., Pozdin, & V. F. Markov, âStructural, optical, and photocatalytic properties of dispersions of CuS doped with Mn2+ and Ni2+â. Kondensirovannyesredyimezhfaznyegranitsy= Condensed Matter and Interphases, Vol.26,No.2, pp.265-279,2024.
[15] K. Venkatarao, G. Sreedevi, Y. N. Rajeev, B. T. Rao, & S. Cole, âImpact Of Mn2+ Ions On Micro-Structural, Luminescence Properties Of Zns-Mos2 Nanocomposites For Optoelectronics.â Rasayan J. Chem., Vol.15, No.1, pp.171-182 ,2022.
[16]M. Mostafa, J. El Nady, S. M. Ebrahim, & A. M. Elshaer, âSynthesis, structural, and optical properties of Mn2+ doped ZnS quantum dots for biosensor application.â Opt. Mater., Vol.112, pp.110732, 2021.
[17] P. Noppakuadrittidej, V. Vailikhit, P.Teesetsopon, S. Choopun, & A. Tubtimtae, âCopper incorporation in Mn2+-doped Sn2S3 nanocrystals and the resultant structural, optical, and electrochemical characteristics.âCeram.Int, , Vol.44, No.12, pp.13973-13985, 2018.
[18] N.Bansal, G. C. Mohanta, & K. Singh, âEffect of Mn2+ and Cu2+ co-doping on structural and luminescent properties of ZnS nanoparticles.â Ceram. Int., Vol.43, No.9, pp.7193-7201,2017.
[19] G. T Rao, R. J. Stella, B. Babu, , K. Ravindranadh, C. V. Reddy, J.Shim, &Ravikumar, R. V. S. S. N, .âStructural, optical and magnetic properties of Mn2+ doped ZnO-CdS composite nanopowder,â MSE: B, Vol.201, pp.72-78, 2015.
[20] E. K. Athanassiou, R. N. Grass, & W. J. Stark, âOne-step large scale gas phase synthesis of Mn2+ doped ZnS nanoparticles in reducing flames,â Nanotechnol., Vol.21,No.21, pp.215603, 2010.
[21] T.Munir, A. Mahmood, A. Ali, N.Abbas, , A. Sohail, Arshia, & Y. Khan,â Investigation of antibacterial and anticancer activities of copper, aluminum and nickel doped zinc sulfide nanoparticles,â Scientific Reports, Vol.14,No.1, pp.19304, 2024.
[22] M.Saroja, M.Venkatachalam, P. Gowthaman, &M.Sathishkumar, âInvestigation of Mn doping concentration on the structural, optical, antimicrobial and dye degradation properties of ZnS thin films,â, Mater. Today Proc. Vol. 43, pp.3325-3335, 2021.
[23] M.Ali, I. M. Ibrahim, E. F. Ahmed, & Q. A. Abbas,âStructural and characteristics of manganese doped zinc sulfide nanoparticles and its antibacterial effect against gram-positive and gram-negative bacteria,âBiophys, Vol.6,No.1,2016.
[24] M. Kawsar, M. S. Hossain, N. M. Bahadur, & S. Ahmed, â Synthesis of nano-crystallite hydroxyapatites in different media and a comparative study for estimation of crystallite size using Scherrer method, Halder-Wagner method size-strain plot, and Williamson-Hall model,â Heliyon, Vol.10,No.3.
[25] A. K. Zak, W. A.,Majid, M. E. Abrishami, & R. Yousefi, âX-ray analysis of ZnO nanoparticles by WilliamsonâHall and sizeâstrain plot methods,â Solid State Sci., Vol.13,No.1, pp.251-256, 2011.
[26] R. Ghamarpoor, A. Fallah, & M. Jamshidi, âA review of synthesis methods, modifications, and mechanisms of ZnO/TiO2-based photocatalysts for photodegradation of contaminants,â ACS omega, Vol.9,No.24, pp.25457-25492,2024.
[27] R.Das, & S.Sarkar,âDetermination of intrinsic strain in poly (vinylpyrrolidone)-capped silver nano-hexapod using X-ray diffraction technique,âCurr. Sci,pp.775-778, 2015.
[28] P. S. Sundaram, T. Sangeetha, S. Rajakarthihan, R. Vijayalaksmi, A. Elangovan, & G. Arivazhagan, âXRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches,â Physica B: Condens. Matter, Vol. 595, No.412342,2020.
[29] S.Mustapha, M. M. Ndamitso, A. S. Abdulkareem, J. O.Tijani, D. T. Shuaib, A. K.Mohammed, & A. Sumaila, âComparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles,â AFSN, Vol.10,No.4, pp.045013, 2019.
[30] D.Nath, F. Singh, & R. Das, âX-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study.â Mater. Chem. Phys, Vol.239, pp.122021.2020.
[31] R. Kripal, A. K.Gupta, S. K. Mishra, R. K. Srivastava, A. C. Pandey, & S. G. Prakash, âPhotoluminescence and photoconductivity of ZnS: Mn2+ nanoparticles synthesized via co-precipitation method,â SpectrochimicaActa Part A:, SpectrochimActa A MolBiomol Spectrosc,Vol.76,No.5, pp.523-530, 2010.
[32] P. Nwaokafor, K. B. Okeoma, O. K. Echendu, A. C. Ohajianya, & K. O. Egbo, âX-ray diffraction analysis of a class of AlMgCu alloy using williamsonâhall and scherrer methods,â Metallogr. Microstruct.Anal.Vol. 10, pp.727-735, 2021.
[33] N. Wang, Y.Yang, & G. Yang, âGreat blue-shift of luminescence of ZnO nanoparticle array constructed from ZnO quantum dots.â NanoscaleRes.Lett, Vol.6, pp.1-6, 2011.
[34] V. H. T. Thi, & B. K. Lee,âEffective photocatalytic degradation of paracetamol using La-doped ZnOphotocatalyst under visible light irradiation.â ,Mater. Res.Bull, Vol.96, pp.171-182. 2017.
[35] R. Ponnusamy, S. C. Selvaraj, M. Ramachandran, P. Murugan, P. M. G. Nambissan, & D. Sivasubramanian, âDiverse spectroscopic studies and first-principles investigations of the zinc vacancy mediated ferromagnetism in Mn-doped ZnO nanoparticles,â Cryst Growth Des,Vol.16,No.7, pp.3656-3668. 2016.
[36] D.Li, J.Hu, F.Fan, S.Bai, , R. Luo, A.Chen& C. C Liu, âQuantum-sized ZnO nanoparticles synthesized in aqueous medium for toxic gases detection.â J. Alloys Compd, Vol.5,No.39, pp.205-209, 2012.
[37] K. SowriBabu, A. Ramachandra Reddy, C. Sujatha, K. Venugopal Reddy, & A. N. Mallika, âSynthesis and optical characterization of porous ZnO.â J. Adv. Ceram, Vol. 2, pp.260-265, 2013.
[38] K. V. S. Rao, B. LavĂ©drine, & P. Boule,âInfluence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates,â J. Photochem. Photobiol, B A: Chemistry, Vol.154,No.2-3, pp.189-193,2003.
[39] K. R. Raghupathi, R. T. Koodali, & A. C. Manna,âSize-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.â Langmuir, Vol.27,No.7, pp.4020-4028,201.
[40] J.Thiel , L. Pakstis, S. Buzby, M. Raffi, , C. Ni, D. E. Pochan, & S. I. Shah, âAntibacterial properties of silver?doped titania.â Small, Vol.3, No.5, pp.799-803,2007.
[41] S. S. Djoki?, & R. E. Burrell, âBehavior of silver in physiological solutions.â, J. Electrochem. Soc, Vol.145, No.5, pp.1426, 1998.
[42] U. Srivastava, A. Singh, M. Ahmed, U. Iqbal, & P. Saini, âFunctional and physicochemical characterization of a novel pearl milletâSoy milk?based synbiotic beverage.â Food Safety and Health,2024.
[43] Y. Matsumura,K.Yoshikata, S. I. Kunisaki, & T. Tsuchido, âMode of bactericidal action of silver zeolite and its comparison with that of silver nitrate.â AEM, Vol.69, No.7, pp.4278-4281, 2003.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.