Full Paper View Go Back

Hybrid Supercapacitor For Energy Storage Devices: A Review

S.E. Umoru1

Section:Review Paper, Product Type: Journal-Paper
Vol.10 , Issue.4 , pp.24-35, Dec-2023


Online published on Dec 31, 2023


Copyright © S.E. Umoru . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S.E. Umoru, “Hybrid Supercapacitor For Energy Storage Devices: A Review,” Journal of Physics and Chemistry of Materials, Vol.10, Issue.4, pp.24-35, 2023.

MLA Style Citation: S.E. Umoru "Hybrid Supercapacitor For Energy Storage Devices: A Review." Journal of Physics and Chemistry of Materials 10.4 (2023): 24-35.

APA Style Citation: S.E. Umoru, (2023). Hybrid Supercapacitor For Energy Storage Devices: A Review. Journal of Physics and Chemistry of Materials, 10(4), 24-35.

BibTex Style Citation:
@article{Umoru_2023,
author = {S.E. Umoru},
title = {Hybrid Supercapacitor For Energy Storage Devices: A Review},
journal = {Journal of Physics and Chemistry of Materials},
issue_date = {12 2023},
volume = {10},
Issue = {4},
month = {12},
year = {2023},
issn = {2347-2693},
pages = {24-35},
url = {https://www.isroset.org/journal/JPCM/full_paper_view.php?paper_id=3395},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/JPCM/full_paper_view.php?paper_id=3395
TI - Hybrid Supercapacitor For Energy Storage Devices: A Review
T2 - Journal of Physics and Chemistry of Materials
AU - S.E. Umoru
PY - 2023
DA - 2023/12/31
PB - IJCSE, Indore, INDIA
SP - 24-35
IS - 4
VL - 10
SN - 2347-2693
ER -

82 Views    75 Downloads    43 Downloads
  
  

Abstract :
Meaningful effort is being contributed to develop a single functional energy storage system that will close the efficiency gap between batteries and supercapacitors and have high power and energy density. Recent energy technical studies have focused a lot of research on hybrid supercapacitor energy storage devices because of their excellent electrochemical properties, safety, commercial feasibility, and environmental sustainability. As a result, the use of hybrid supercapacitors as energy storage devices is expanding in power, industry, and transportation, particularly in the context of hybrid energy vehicles. A few of the preferred electrode materials utilized in hybrid supercapacitors are carbon derivatives from 0D to 3D, such as activated carbon (AC), graphene, porous carbon, etc. Their availability in reserves, economic feasibility, changeable pore size, and various applications make them viable research focus. Considering this, this paper comprehensively reviews electrochemical supercapacitors and batteries in hybrid energy systems. The three different hybrid supercapacitor types,asymmetric, composite, and battery-type,as well as the electrode materials they incorporate,are the subject of this study. Additionally, the electrochemical characteristics of the porous and graphene-based carbon electrode materials used in asymmetric hybrid capacitors and metal ions hybrid capacitors are reviewed in this work. To further study hybrid supercapacitors for potential use in electric vehicles and other industrial applications, this special review paper`s output will act as a database.

Key-Words / Index Term :
hybrid supercapacitor, energy density, graphene, metal oxides, conducting polymers

References :
[1] Dell, R. M., & Rand, D. A. J, “Energy storage—a key technology for global energy sustainability”. Journal of power sources, Vol. 100, Issue 1-2, pp. 2-17, 2001
[2] Kularatna, N., &Gunawardane, K. “Energy Storage Devices for Renewable Energy-Based Systems”. Academic Press: London, UK.2021
[3] Hu, Q., Zhang, S., Zou, X., Hao, J., Bai, Y., Yan, L., & Li, W. “Coordination agent-dominated phase control of nickel sulfide for high-performance hybrid supercapacitor”, Journal of Colloid and Interface Science, Vol. 607, pp. 45-52, 2022.
[4] Caruso, M., Castiglia, V., Miceli, R., Nevoloso, C., Romano, P., Schettino, G., ... &Inguanta, R. “Nanostructured lead acid battery for electric vehicles applications”, International Conference of Electrical and Electronic Technologies for Automotive, pp. 1-5, .2017
[5] Sasaki T, Ukyo Y, Novvák P, “Memory effects in a lithium-ion battery”, Nature Material, Vol. 12, Issue 6,pp. 569-575, 2013
[6] Juan PR, Nicolas M, Henry O, “Soc estimation for lithium-ion batteries, “Review and future changes” Electronics, Vol. 6, Issue 40, pp.102, 2017
[7] Todd MB, Srinivas G, Thomas FF , “A critical review of thermal issues in lithium-ion battaries”, Journal of the Electrochemical Society, Vol.158, Issue 3, pp.1, 2011
[8] Arumuga M,(2017); An outlook on lithium battery technology; ACS central science Vol. 3, Issue 10,pp. 1063-1069, 2017
[9] Ghassan Z, Rodolfo D, Monica C, Guzay P, “The lithium-ion battery: state of the art and future perspectives”, Renewable and sustainable Energy Review, Vol. 89, pp. 292-308, 2018
[10] Patrice S, Yury G, “Perspective for Electrochemical capacitors and related devices”, Nature materials Vol. 19, Issue 11, pp. 1151-1163, 2020
[11] Volker P, Christopher RD, Jonather C, Kelvin WK, Emin CK, Yury G (2012); The electrochemical flow capacitor: A new concept and recovery; Advanced energy materials Vol. 2, Issue 7, pp. 895-902. 2012
[12] Elemike, E. E., Osafile, O. E., &Omugbe, E. “New perspectives 2Ds to 3Ds MXenes and graphene functionalized systems as high performance energy storage materials”, Journal of Energy Storage, Vol. 42, pp. 102993, 2021.
[13] Kouchachvili, L., Yaïci, W., &Entchev, E.”Hybrid battery/supercapacitor energy storage system for the electric vehicles”. Journal of Power Sources, Vol. 374, pp. 237-248, 2018
[14] Jiya, I. N., Gurusinghe, N., & Gouws, R.”Electrical circuit modeling of double layer capacitors for power electronics and energy storage applications” A review. Electronics, Vol. 7, Issue 11, pp. 268., 2018
[15] Zhang, W., Xu, C., Ma, C., Li, G., Wang, Y., Zhang, K., ... & Ren, W, “Nitrogen?superdoped 3D graphene networks for high?performance supercapacitors”, Advanced Materials, Vol. 29, Isuue 36, pp. 1701677, 2017
[16] Wang, H., Shen, C., Liu, J., Zhang, W., & Yao, S. “Three-dimensional MnCo2O4/graphene composites for supercapacitor with promising electrochemical properties” Journal of Alloys and Compounds, Vol. 792, pp. 122-129, 2019.
[17] Wang, J., Huang, Y., Han, X., Li, Z., Zhang, S., &Zong, M. “A flexible Zinc-ion hybrid supercapacitor constructed by porous carbon with controllable structure”, Applied Surface Science, Vol. 579, pp. 152247, 2022
[18] Omugbe, E., Osafile, O. E., Nenuwe, O. N., Enaibe, E. A., &Elemike, E. E. “Thermal and electrical transport conductivities of novel ordered double two-dimensional MXenes via density functional theory” Canadian Journal of Chemistry, (ja). 2023
[19] Zhang, W., Xu, C., Ma, C., Li, G., Wang, Y., Zhang, K., ... & Ren, W. “Nitrogen?superdoped 3D graphene networks for high?performance supercapacitors”, Advanced Materials, Vol. 29I, ssue 36, pp. 1701677, 2017.
[20] Hou, J., Jiang, K., Wei, R., Tahir, M., Wu, X., Shen, M., ... & Cao, C.” Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors”, ACS applied materials & interfaces, Vol. 9, Issue 36, pp. 30626-30634, 2017.
[21] Arunachalam, R., Prataap, R. V., Pavul Raj, R., Mohan, S., Vijayakumar, J., Péter, L., & Al Ahmad, M, “Pulse electrodeposited RuO2 electrodes for high-performance supercapacitor applications”, Surface Engineering, Vol. 35, Issue 2, pp. 102-108, 2019.
[22] Mohajernia, S., Hejazi, S., Mazare, A., Nguyen, N. T., Hwang, I., Kment, S., ... &Schmuki, P. (2017). Semimetallic core-shell TiO2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO2 supercapacitors. Materials today energy, Vol. 6, pp. 46-52, 2017.
[23] Lokhande, P. E., & Chavan, U. S. “Nanoflower-like Ni (OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications”, Materials Letters, Vol, 218, pp. 225-228, 2018
[24] Song, B., Zhao, J., Wang, M., Mullavey, J., Zhu, Y., Geng, Z., ... & Wong, C. P. “Systematic study on structural and electronic properties of diamine/triamine functionalized graphene networks for supercapacitor application” Nano Energy, Vol. 31, pp. 183-193, 2017.
[25] Yang, Y., Huang, X., Sheng, C., Pan, Y., Huang, Y., & Wang, X. “In-situ formation of MOFs derivatives CoSe2/Ni3Se4 nanosheets on MXene nanosheets for hybrid supercapacitor with enhanced electrochemical performance”. Journal of Alloys and Compounds, Vol. 920, pp. 165908, 2022.
[26] Yan, J., Wang, Q., Wei, T., & Fan, Z. “Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities”. Advanced Energy Materials, Vol. 4, Issue 4, pp. 1300816.2014.
[27] Itoi, H., Hasegawa, H., Iwata, H., &Ohzawa, Y. “Non-polymeric hybridization of a TEMPO derivative with activated carbon for high-energy-density aqueous electrochemical capacitor electrodes”. Sustainable Energy & Fuels, Vol. 2, Issue 3, pp. 558-565.2018
[28] Ma, X., Zhao, L., Yu, Z., Wang, X., Song, X., Ning, G., & Gao, J. “Excellent Compatibility of the Gravimetric and Areal Capacitances of an Electric?Double?Layer Capacitor Configured with S?Doped Activated Carbon”. ChemSusChem, Vol. 11, Issue 21, pp. 3766-3773, 2018.
[29] Wu, N., Bai, X., Pan, D., Dong, B., Wei, R., Naik, N., ... & Guo, Z. “Recent advances of asymmetric supercapacitors”, Advanced Materials Interfaces, Vol. 8, Isssue 1, pp. 2001710, 2021.
[30] Gao, Y., & Zhao, L. “Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors”. Chemical Engineering Journal, Vol. 430, pp. 132745, 2022.
[31] Liang, R., Du, Y., Xiao, P., Cheng, J., Yuan, S., Chen, Y., ... & Chen, J. “Transition metal oxide electrode materials for supercapacitors: a review of recent developments”. Nanomaterials, Vol. 11, Issue 5, pp. 1248, 2021.
[32] Forouzandeh, P., Kumaravel, V., & Pillai, S. C. “Electrode materials for supercapacitors: a review of recent advances. Catalysts, Vol. 10, Issue 9, pp. 969, 2020.
[33] Shao, Y., El-Kady, M. F., Sun, J., Li, Y., Zhang, Q., Zhu, M., ... &Kaner, R. B. “Design and mechanisms of asymmetric supercapacitors”. Chemical reviews, Vol. 118, Issue 18, pp. 9233-9280, 2018.
[34] Zhu, Y., Wu, Z., Jing, M., Hou, H., Yang, Y., Zhang, Y., ... & Ji, X. “ Porous NiCo 2 O 4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor”, Journal of Materials Chemistry A, Vol. 3, Issue 2, pp. 866-877, 2015.
[35] Xue, W. D., Wang, W. J., Fu, Y. F., He, D. X., Zeng, F. Y., & Zhao, R. “Rational synthesis of honeycomb-like NiCo2O4@ NiMoO4 core/shell nanofilm arrays on Ni foam for high-performance supercapacitors”. Materials Letters, Vol. 186, pp. 34-37, 2017.
[36] Alguail, A. A.”Battery type hybrid supercapacitor based on conducting polymers” ??????????? ? ????????, 2018.
[37] Low, W. H., Khiew, P. S., Lim, S. S., Siong, C. W., Chia, C. H., &Ezeigwe, E. R. “Facile synthesis of graphene-Zn3V2O8 nanocomposite as a high performance electrode material for symmetric supercapacitor”. Journal of Alloys and Compounds, Vol. 784, pp. 847-858, 2019.
[38] Lobato, B., Suárez, L., Guardia, L., & Centeno, T. A. “Capacitance and surface of carbons in supercapacitors”, Carbon, Vol. 122, pp. 434-445, 2017.
[39] Li-feng, C., Jing, X., Jian-yu, H., Hong-ji, X., Fei, X., Ye-ru, L., ... & Ding-cai, W. “Structure control of powdery carbon aerogels and their use in high-voltage aqueous supercapacitors”. ?????, Vol. 32, Issue 6, pp. 550-556, 2017.
[40] Gao, X. R., Xing, Z., Li, Z. J., Dong, X. Y., Ju, Z. C., & Guo, C. L. “A review on recent advances in carbon aerogels: their preparation and use in alkali-metal ion batteries”. New Carbon Materials, Vol. 35, Issue 5, pp. 486-507, 2020.
[41] Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., & Van Schalkwijk, W. “Nanostructured materials for advanced energy conversion and storage devices”, Nature materials, Vol. 4, Issue 5, pp. 366-377, 2005.
[42] Li, J., Zhang, G., Fu, C., Deng, L., Sun, R., & Wong, C. P. “Facile preparation of nitrogen/sulfur co-doped and hierarchical porous graphene hydrogel for high-performance electrochemical capacitor”, Journal of Power Sources, Vol. 345, pp. 146-155, 2017.
[43] Chen, Y., Zhang, X., Zhang, H., Sun, X., Zhang, D., & Ma, Y. “High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation”,Rsc Advances, Vol. 2, Issue 20, pp. 7747-7753, 2012.
[44] Zhang, F., Tang, J., Shinya, N., & Qin, L. C. “Hybrid graphene electrodes for supercapacitors of high energy density. Chemical”, Physics Letters, Vol. 584, pp.124-129, 2013.
[45] Jia, H., Cai, Y., Li, S., Zheng, X., Miao, L., Wang, Z., ... & Fei, W. “In situ synthesis of core-shell vanadium nitride@ N-doped carbon microsheet sponges as high-performance anode materials for solid-state supercapacitors”, Journal of colloid and interface science, Vol. 560, pp.122-129, 2020.
[46] Yumak, T., Bragg, D., &Sabolsky, E. M. “Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications”, Applied Surface Science, Vol. 469, pp. 983-993, 2019.
[47] Zardkhoshoui, A. M., &Davarani, S. S. H. (2019). Designing a flexible all-solid-state supercapacitor based on CuGa2O4 and FeP-rGO electrodes. Journal of Alloys and Compounds, 773, 527-536.
[48] Ochai-Ejeh, F. U. “Synthesis and characterization of activated carbon and manganese-based oxide/layered double hydroxide materials for supercapacitor applications (Doctoral dissertation, University of Pretoria), 2018.
[49] Omar, N., Abdullah, E. C., Numan, A., Mubarak, N. M., Khalid, M., Aid, S. R., &Agudosi, E. S.”Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material”, Journal of Energy Storage,Vol. 49, pp. 104147, 2022.
[50] Zhou, J., Yin, Y., Mansour, A. N., & Zhou, X. “Experimental studies of mediator-enhanced polymer electrolyte supercapacitors”, Electrochemical and Solid-State Letters, Vol. 14, Issue 3, pp. A25, 2010.
[51] Zhou, X., Qiao, X., Zhang, C., Wang, Y., Mansour, A. N., Waller, G. H., & Martin, C. A. “The effects of potassium ferrocyanide/potassium ferricyanide and their derivatives on the performance of solid-state supercapacitor”, In Proceedings of the 48th Power Sources Conference, Vol. 17, pp. 292, 2018.
[52] Zheng, C., Zhou, X., Cao, H., Wang, G., & Liu, Z. “Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material”, Journal of power sources, Vol. 258, pp. 290-296, 2014.
[53] Wen, Y., Qin, T., Wang, Z., Jiang, X., Peng, S., Zhang, J., Hou, J., Huang, F., He, D. and Cao, G., “Self-supported binder-free carbon fibers/MnO2 electrodes derived from disposable bamboo chopsticks for high-performance supercapacitors”, Journal of Alloys and Compounds, Vol. 699, pp.126-135, 2017.
[54] Yan, J., Wei, T., Qiao, W., Fan, Z., Zhang, L., Li, T. and Zhao, Q., “A high-performance carbon derived from polyaniline for supercapacitors”, Electrochemistry communications, Vol. 12, Issue 10, pp.1279-1282, 2017.
[55] Zhou, X., Wang, Y., Zhang, C., &Qiao, X.”Redox electrolytes/mediators for Supercapacitors”, Supercapacitor Technology,pp. 45-94, 2019.
[56] Nayak, S., Kittur, A. A., & Nayak, S. “Biosynthesis of zinc oxide-cobalt oxide nanocomposite as electrode material and its performance evaluation for the sustainable hybrid supercapacitor energy storage devices”, Chemical Physics Letters, Vol. 806, pp. 140058, 2022.
[57] Soltani, M., & Beheshti, S. H. “A comprehensive review of lithium ion capacitor: development, modeling, thermal management and applications”, Journal of Energy Storage, Vol. 34, pp. 102019, 2021.
[58] Xiong, S., Jiang, S., Wang, J., Lin, H., Lin, M., Weng, S., ... & Chen, J. “A high-performance hybrid supercapacitor with NiO derived NiO@ Ni-MOF composite electrodes”, Electrochimica Acta, Vol. 340, pp. 135956, 2020.
[59] Benoy, S. M., Pandey, M., Bhattacharjya, D., &Saikia, B. K. “Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials”, Journal of Energy Storage, Vol. 52, pp. 104938, 2022.
[60] Huang, Y., Luo, C., Zhang, Q., Zhang, H., & Wang, M. S. “Rational design of three-dimensional branched NiCo-P@ CoNiMo-P core/shell nanowire heterostructures for high-performance hybrid supercapacitor”, Journal of Energy Chemistry, Vol. 61, pp. 489-496, 2021.
[61] Zhang, G. C., Feng, M., Li, Q., Wang, Z., Fang, Z., Niu, Z., ... & Wang, D. “High energy density in combination with high cycling stability in hybrid supercapacitors”, ACS Applied Materials & Interfaces, Vo. 14, Issue 2,pp. 2674-2682, 2022.
[62] Shi, B., Li, L., Chen, A., Jen, T. C., Liu, X., & Shen, G. “Continuous fabrication of Ti 3 C 2 T x MXene-Based braided coaxial zinc-ion hybrid supercapacitors with improved performance”, Nano-Micro Letters, Vol. 14, pp. 1-10, 2022.
[63] Zhao, Y., Liu, F., Zhu, K., Maganti, S., Zhao, Z., & Bai, P. “Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances”, Advanced Composites and Hybrid Materials, Vol. 5, Issue 2, pp. 1537-1547, 2022.
[64] Zhu, X., & Liu, S. “Tremella-like 2D Nickel–Copper Disulfide with Ultrahigh Capacity and Cyclic Retention for Hybrid Supercapacitors”, ACS Applied Materials & Interfaces, Vol. 14, Issue 38, pp. 43265-43276, 2022.
[65] Bao, E., Ren, X., Wu, R., Liu, X., Chen, H., Li, Y., & Xu, C. “Porous MgCo2O4 nanoflakes serve as electrode materials for hybrid supercapacitors with excellent performance”, Journal of Colloid and Interface Science, Vol. 625, pp. 925-935, 2022.
[66] Xiong, S., Jiang, S., Wang, J., Lin, H., Lin, M., Weng, S., ... & Chen, J. “A high-performance hybrid supercapacitor with NiO derived NiO@ Ni-MOF composite electrodes”, Electrochimica Acta, Vol. 340, pp. 135956, 2020.
[67] Zhang, W., Jiang, H., Li, Y., Ma, W., Yang, X., & Zhang, J. “Pizza-like heterostructured Ti3C2Tx/Bi2S3@ NC with ultra-high specific capacitance as a potential electrode material for aqueous zinc-ion hybrid supercapacitors”, Journal of Alloys and Compounds, Vol. 883, pp. 160881, 2021.
[68] Xie, A., Wang, H., Zhu, Z., Zhang, W., Li, X., Wang, Q., & Luo, S, “Mesoporous CeO2-?-MnO2-reduced graphene oxide composite with ultra-high stability as a novel electrode material for supercapacitor”. Surfaces and Interfaces, Vol. 25, pp. 101177, 2021.
[69] Xu, Z., Zhang, Z., Yin, H., Hou, S., Lin, H., Zhou, J., &Zhuo, S. “Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode”, RSC advances, Vol. 10, Issue 6, pp. 3122-3129, 2020.
[70] Haider, S., Murtaza, I., Shuja, A., Abid, R., Ali, H., Asghar, M. A., & Khan, Y. “Enhanced Energy Density of PANI/Co3O4/Graphene Ternary Nanocomposite in a Neutral Aqueous Electrolyte of Na2SO4 for Supercapacitor Applications”, Journal of Electronic Materials, Vol. 51, Issue 9, pp. 5417-5428, 2022.
[71] Vandana, M., Veeresh, S., Ganesh, H., Nagaraju, Y. S., Vijeth, H., Basappa, M., &Devendrappa, H. “Graphene oxide decorated SnO2 quantum dots/polypyrrole ternary composites towards symmetric supercapacitor application”, Journal of Energy Storage, Vol. 46, pp. 103904, 2022.
[72] Pallavolu, M. R., Gaddam, N., Banerjee, A. N., Nallapureddy, R. R., Kumar, Y. A., &Joo, S. W. “Facile construction and controllable design of CoTiO3@ Co3O4/NCNO hybrid heterojunction nanocomposite electrode for high-performance supercapacitors”, Electrochimica Acta, Vol. 407, pp. 139868, 2022.
[73] Pallavolu, M. R., Gaddam, N., Banerjee, A. N., Nallapureddy, R. R., Kumar, Y. A., &Joo, S. W. “Facile construction and controllable design of CoTiO3@ Co3O4/NCNO hybrid heterojunction nanocomposite electrode for high-performance supercapacitors”, Electrochimica Acta, Vol. 407, pp. 139868, 2022.
[74] Chang, C., Chen, W., Chen, Y., Chen, Y., Chen, Y., Ding, F., ... & Liu, Z. “Recent progress on two-dimensional materials”, Acta Phys.-Chim. Sin, Vol. 37, Issue 12, pp. 2108017, 2021.
[75] Han, S., Hou, F., Yuan, X., Liu, J., Yan, X., & Chen, S. “Continuous hierarchical carbon nanotube/reduced graphene oxide hybrid films for supercapacitors”, Electrochimica Acta, Vol. 225, pp. 566-573, 2017.
[76] Wang, Q., Meng, T., Li, Y., Yang, J., Huang, B., Ou, S., ... & Tong, Y. “ Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery”, Energy Storage Materials, Vol. 39, pp. 354-364, 2021.
[77] Li, Z., An, Y., Dong, S., Chen, C., Wu, L., Sun, Y., & Zhang, X. “Progress on zinc ion hybrid supercapacitors: Insights and challenges” Energy Storage Materials, Vol.31, pp. 252-266, 2020.
[78] Gao, D., Luo, Z., Liu, C., & Fan, S. “A survey of hybrid energy devices based on supercapacitors”, Green Energy & Environment, 2022
[79] Liao, K., Wang, H., Wang, L., Xu, D., Wu, M., Wang, R., ... & Hu, X. “A high-energy sodium-ion capacitor enabled by a nitrogen/sulfur co-doped hollow carbon nanofiber anode and an activated carbon cathode”, Nanoscale Advances, Vol. 1, Issue 2, pp. 746-756, 2019.
[80] Zhang, D., Yin, Y., Liu, C., & Fan, S. “Modified secondary lithium metal batteries with the polyaniline–carbon nanotube composite buffer layer”, Chemical Communications, Vol. 51, Issue 2, pp. 322-325, 2015.
[81] Wu, G., Wu, X., Zhu, X., Xu, J., & Bao, N. “Two-dimensional hybrid nanosheet-based supercapacitors: From building block architecture, fiber assembly, and fabric construction to wearable applications”, ACS nano, Vol. 16, Issue 7, pp. 10130-10155, 2022.
[82] Patil, S. S., Bhat, T. S., Teli, A. M., Beknalkar, S. A., Dhavale, S. B., Faras, M. M., ... & Patil, P. S. “Hybrid solid state supercapacitors (HSSC`s) for high energy & power density: an overview”, Engineered Science, Vol. 12, Issue 4, pp. 38-51, 2020.
[83] Wang, H., Ye, W., Yang, Y., Zhong, Y., & Hu, Y. “Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives”, Nano Energy, Vol. 85, pp. 105942, 2021.
[84] Namsheer, K., & Rout, C. S. “Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications”, RSC advances, Vol. 11, Issue 10, pp. 5659-5697, 2021.
[85] Bhattacharyya, R., Key, B., Chen, H., Best, A. S., Hollenkamp, A. F., & Grey, C. P. ‘In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries”, Nature materials, Vol. 9, Issue 6, pp. 504-510, 2010.
[86] Al-zubaidi, A., Ji, X., & Yu, J. (2017). Thermal charging of supercapacitors: a perspective. Sustainable Energy & Fuels, 1(7), 1457-1474.
[87] Sun, J., Zhou, H., Song, P., Liu, Y., Wang, X., Wei, T., ... & Zhu, G. “Cuprous sulfide derived CuO nanowires as effective electrocatalyst for oxygen evolution”, Applied Surface Science, Vol. 547, pp. 149235, 2021.
[88] Tian, Z., Tong, X., Sheng, G., Shao, Y., Yu, L., Tung, V., ... & Liu, Z. “Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units”, Nature communications, Vol. 10, Issue 1, pp. 4913, 2019.
[89] Omugbe, E., Osafile, O. E., Nenuwe, O. N., &Enaibe, E. A. “Energy band gaps and novel thermoelectric properties of two-dimensional functionalized Yttrium carbides (MXenes). Physica B”, Condensed Matter, Vol. 639, pp. 413922, 2022.
[90] Wang, P., Zhang, G., Li, M. Y., Yin, Y. X., Li, J. Y., Li, G., ... & Guo, Y. G. “Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors”, Chemical Engineering Journal, Vol. 375, pp.122020,2019.
[91] Jagadale, A., Zhou, X., Xiong, R., Dubal, D. P., Xu, J., & Yang, S. “Lithium ion capacitors (LICs): Development of the materials”, Energy Storage Materials, Vol. 19, pp. 314-329, 2019.
[92] Benoy, S. M., Pandey, M., Bhattacharjya, D., &Saikia, B. K. “Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials”, Journal of Energy Storage, Vol. 52, pp. 104938, 2022.
[93] Wu, Y., Sun, Y., Tong, Y., Liu, X., Zheng, J., Han, D., ... &Niu, L. “Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation” Energy Storage Materials, Vol. 41, pp. 108-132, 2021.
[94] Zuo, W., Li, R., Zhou, C., Li, Y., Xia, J., & Liu, J. (2017). Battery?supercapacitor hybrid devices: recent progress and future prospects. Advanced science, 4(7), 1600539.
[95] Huang, Y., Zhu, M., Huang, Y., Pei, Z., Li, H., Wang, Z., ... &Zhi, C. “Multifunctional energy storage and conversion devices” Advanced Materials, Vol. 28, Issue 38, pp. 8344-8364, 2016.
[96] Maitra, S., Mitra, R., & Nath, T. K. “Aqueous Mg-Ion Supercapacitor and Bi-Functional Electrocatalyst Based on MgTiO3 Nanoparticles. Journal of Nanoscience and Nanotechnology”, Vol. 21, Issue 12, pp. 6217-6226, 2021.
[97] Song, Z., Miao, L., Ruhlmann, L., Lv, Y., Zhu, D., Li, L., ... & Liu, M. “Self?assembled carbon superstructures achieving ultra?stable and fast proton?coupled charge storage kinetics”, Advanced Materials, Vol. 33, Issue 49, pp. 2104148, 2021.
[98] Wang, J., Zhao, Z., Muchakayala, R., & Song, S. “High-performance Mg-ion conducting poly (vinyl alcohol) membranes: Preparation, characterization and application in supercapacitors”, Journal of Membrane Science, Vol. 555, pp. 280-289, 2018.
[99] Alagar, S., Kumari, S., Upreti, D., Aashi, &Bagchi, V. “High-Performance Mg-Ion Supercapacitor Designed with a N-Doped Graphene Wrapped CoMn2O4 and Porous Carbon Spheres”, Energy & Fuels, Vol. 36, Issue 23, pp. 14442-14452, 2022.
[100] An, G. H., Hong, J., Pak, S., Cho, Y., Lee, S., Hou, B., & Cha, S. “2D metal Zn nanostructure electrodes for high?performance Zn ion supercapacitors” Advanced Energy Materials, Vol. 10, Issue 3, pp. 1902981, 2020.
[101] Jin, J., Geng, X., Chen, Q., & Ren, T. L. “A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors”, Nano-Micro Letters, Vol. 14, Issue1, 64, 2022.
[102] Smith, B. D., Wills, R. G. A., &Cruden, A. J. “Aqueous Al-ion cells and supercapacitors—A comparison”, Energy Reports, Vol. 6, pp. 166-173, 2020.
[103] Li, K., Shao, Y., Liu, S., Zhang, Q., Wang, H., Li, Y., &Kaner, R. B. “Aluminum?Ion?Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability”, Power Supply for Flexible Electrochromic Devices. Small, Vol. 13, Issue 19, pp. 1700380, 2017.
[104] Fang, Q., Sun, M., Ren, X., Sun, Y., Yan, Y., Gan, Z., ... & Fu, Y. “ MnCo2O4/Ni3S4 nanocomposite for hybrid supercapacitor with superior energy density and long-term cycling stability”, Journal of Colloid and Interface Science, Vol. 611, pp. 503-512, 2022.
[105] Zhang, Z., Li, J., Qian, J., Li, Z., Jia, L., Gao, D., &Xue, D. “Significant Change of Metal Cations in Geometric Sites by Magnetic?Field Annealing FeCo2O4 for Enhanced Oxygen Catalytic Activity”, Small, Vol. 18, Issue 7, pp. 2104248, 2022.
[106] Shi, C., Sun, J., Pang, Y., Liu, Y., Huang, B., & Liu, B. T. “A new potassium dual-ion hybrid supercapacitor based on battery-type Ni (OH)2 nanotube arrays and pseudocapacitor-type V2O5-anchored carbon nanotubes electrodes”, Journal of Colloid and Interface Science, Vol. 607, pp. 462-469, 2022.
[107] Feng, T., Jiao, H., Li, H., Wang, J., Zhang, S., & Wu, M. “ High performance of electrochemically deposited NiCo2S4/CNT composites on nickel foam in flexible asymmetric supercapacitors”, Energy & Fuels, Vol. 36, Issue 4, pp. 2189-2201, 2022.
[108] Mule, A. R., Ramulu, B., & Yu, J. S. “Prussian?Blue Analogue?Derived Hollow Structured Co3S4/CuS2/NiS2 Nanocubes as an Advanced Battery?Type Electrode Material for High?Performance Hybrid Supercapacitors”, Small, Vol. 18, Issue 10, pp. 2105185, 2022.
[109] Bommireddy, P. R., Sekhar, M. C., Lee, Y. W., Kumar, M., Suh, Y., & Park, S. H. “Binder-free Co–Ni hexacyanoferrate as a battery-type electrode material for hybrid supercapacitors”, Ceramics International, Vol. 48, Issue 8, pp. 11849-11857, 2022.
[110] Sun, J., Du, X., Wu, R., Mao, H., Xu, C., & Chen, H. “Simple synthesis of honeysuckle-like CuCo2O4/CuO composites as a battery type electrode material for high-performance hybrid supercapacitors”, International Journal of Hydrogen Energy, Vol. 46, Issue 1, pp. 66-79, 2021.
[111] Zheng, J., Wang, C. G., Zhou, H., Ye, E., Xu, J., Li, Z., &Loh, X. J. “Current research trends and perspectives on solid-state nanomaterials in hydrogen storage”, Research, 2021.
[112] Mahani, R. M., Darwish, A. G., &Ghoneim, A. M. “Dielectric relaxation processes in Mn2O3/reduced graphene oxide nanocomposite”, Journal of Electronic Materials, Vol. 49, pp. 2130-2136, 2020.
[113] Purusottem R. B., M. Chandra Sekhar, Young-Woong L., Kumar M., Suh Y., Si-Hyun P. “Binder-free Co-Ni hexacyanoferrate as a battery-type electrode material for hybrid supercapacitors”, Ceramics International Vol. 48, Issue 8, pp. 11849-11857, 2022.
[114] Xiaohong L, Jiale S, Yafei L, Dongsheng L, Chunju X, Huiyu C,”The CuCo2O4/CuO composite-based microspheres serves as a battery-type cathode material for highly capable hybrid supercapacitors”, Journal of alloys and compound, Vol. 894, pp. 162566, 2022.
[115] Suma CR, Sreenkanth TV, Jonghoon K, KisooY, “In-situ grown Co-doped Ni-hexacyanoferrate/Ni-foam composites as battery-type electrode materials for aqueous hybrid supercapacitors”, Journal of alloys and compounds, Vol. 918, pp. 165638, 2022.
[116] Karuppaiah M, Sriram B, Sakthivel P, Asaitham-bi S, Sidharth D, Balaji V, Wang S-F, Yuvakkumar R, Ravi G, “Mesoporous Oxygen vacancy 3D-rhombohedral Ov-Mn2O3 mixed with rGO@CNTs as Cathode material for self-charging pouch-type hybrid supercapacitor applications”, Material Today chemistry Vol. 26, pp. 101017, 2022.
[117] Xingxing L, Yanan M, Yang Y, Gruosheng L, Chuankum Z, Minglei C, Yongchen X, Jintao Z, Yongheng Z, Yihua G, “Flexible Zn-ion hybrid micro-supercapacitor based on Mxene anode and V2O5 cathode with high capacitance”, Chemical engineering journal Vol. 428, pp. 130965, 2022.
[118] Damin L, Anjneya V, Khan L, Thomas F, Kwang HK, Sanjay M, “Hybrid nanostructured PANI@NiCu(CO3)(OH)2 composite for flexible high-performance supercapacitors”, journal of material research Vol. 37, Issue 1, pp. 304-318, 2022.
[119] Ahmed A, Sheikh MH, Atia TA, Juliana Z, Md Aminul I, Abl KA “Advanced materials and technologies for hybrid supercapacitors for energy storage- A rview”, Journal of energy storage, Vol. 25,pp. 100852, 2019
[120] Deepak PD, Omar A, Vanesa R, Pedro G-R, “Hybrid energy storage; the marging of battery and supercapacitor chemistries”, chemical society reviews, Vol. 44, Issue 7, pp. 1777-1790, 2015
[121] Fan Z, Tengfei Z, Xi Y, Long Z, Kai L, Yi H, Yongsheng C, “A high-performance supercapacitor-batteryhybrid energy storage device based on grapheme-enhanced electrode materials with ultrahigh energy density”, Energy and Envirnmental science, Vol. 6, Issue 5, pp. 1623-1632, 2013.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation