Full Paper View Go Back

Synthesis, Characterization and Optical Properties of Charge Transfer Complexes

Dhaval Khant1 , Vishal Jain2 , Salman Zabha3 , Tarun Parangi4

Section:Research Paper, Product Type: Journal-Paper
Vol.11 , Issue.2 , pp.1-7, Jun-2024


Online published on Jun 30, 2024


Copyright © Dhaval Khant, Vishal Jain, Salman Zabha, Tarun Parangi . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Dhaval Khant, Vishal Jain, Salman Zabha, Tarun Parangi, “Synthesis, Characterization and Optical Properties of Charge Transfer Complexes,” Journal of Physics and Chemistry of Materials, Vol.11, Issue.2, pp.1-7, 2024.

MLA Style Citation: Dhaval Khant, Vishal Jain, Salman Zabha, Tarun Parangi "Synthesis, Characterization and Optical Properties of Charge Transfer Complexes." Journal of Physics and Chemistry of Materials 11.2 (2024): 1-7.

APA Style Citation: Dhaval Khant, Vishal Jain, Salman Zabha, Tarun Parangi, (2024). Synthesis, Characterization and Optical Properties of Charge Transfer Complexes. Journal of Physics and Chemistry of Materials, 11(2), 1-7.

BibTex Style Citation:
@article{Khant_2024,
author = {Dhaval Khant, Vishal Jain, Salman Zabha, Tarun Parangi},
title = {Synthesis, Characterization and Optical Properties of Charge Transfer Complexes},
journal = {Journal of Physics and Chemistry of Materials},
issue_date = {6 2024},
volume = {11},
Issue = {2},
month = {6},
year = {2024},
issn = {2347-2693},
pages = {1-7},
url = {https://www.isroset.org/journal/JPCM/full_paper_view.php?paper_id=3561},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/JPCM/full_paper_view.php?paper_id=3561
TI - Synthesis, Characterization and Optical Properties of Charge Transfer Complexes
T2 - Journal of Physics and Chemistry of Materials
AU - Dhaval Khant, Vishal Jain, Salman Zabha, Tarun Parangi
PY - 2024
DA - 2024/06/30
PB - IJCSE, Indore, INDIA
SP - 1-7
IS - 2
VL - 11
SN - 2347-2693
ER -

1 Views    11 Downloads    0 Downloads
  
  

Abstract :
With the aim of significantly improving the applications of charge transfer complexes (CTCs) in the field of electrical and optoelectronic, in the present work we have studied a charge transfer (CT) interaction between organic donor molecules and molecular iodine. In this content, 1,1,4,4-Tetraphenyl-1,3-Butadiene (TPB) and 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) as donor molecules were reacted with I2 to form CTCs. The resulting compounds were characterized by spectral analysis (FT-IR, NMR and UV-Visible spectroscopy). The obtained CTCs have been used to measure band-gap and refractive index values. The observed values indicate possible applicability of tee studied CTCs in the field of optoelectronics.

Key-Words / Index Term :
Charge transfer complexes; TEMPO; TPB; Optoelectronic

References :
[1] M. J. Percino, M. Ceron, G. Soriano-Moro, J. A. Pacheco, M. E. Castro, V. M. Chapela, J. Bonilla-Cruz, E. Saldivar-Guerra “2,2,6,6-Tetramethyl-1-oxopiperidinetribromide and Two Forms of 1-Hydroxy-2,2,6,6tetramethylpiperidinium Bromide Salt: Syntheses, Crystal Structures and Theoretical Calculations”, Journal of Molecular Structure Vol.1103, Issue.5, pp.254-264, 2016. DOI:10.1016/j.molstruc.2015.09.020.
[2] T.S. Kolesnikova, G.I. Bondarenko, M.S. Chernov’yants, P.A. Knyazev, M.E. Kletskii, O.N. Burov, “Charge Transfer Complexes Formed by Heterocyclic Thioamides and Tetracyanoethylene: Experimental and Theoretical Study”, Journal of Physical Chemistry A, Vol.121, pp.7000?7008, 2017. DOI: 10.1021/acs.jpca.7b00564.
[3] A. Gomez-Casado, A. Gonzalez-Campo, Y. Zhang, P. Jonkheijm, J. Huskens, X. Zhang, “Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy”, Polymers, Vol.5, pp.269-283, 2013. DOI: 10.3390/polym5010269.
[4] A.F.M.M Rahman, A.H. Bakheit, S. Rahman, G.A.E. Mostafa, H. Alrabiah, “Procainamide Charge Transfer Complexes with Chloranilic Acid and 2,3-Dichloro-5,6-dicyano1,4-benzoquinone: Experimental and Theoretical Study”, Processes Vol.11, pp.711, 2023. DOI: 10.3390/pr11030711.
[5] F. Kagawa, S. Horiuchi, Y. Tokura, “Quantum Phenomena Emerging Near a Ferroelectric Critical Point in a Donor–Acceptor Organic Charge-Transfer Complex”, Crystals, Vol. 7, pp. 106, 2017. DOI: 10.3390/cryst7040106www.
[6] D. Shen, W.-C. Chen, M.-F. Lo, C.-S. Lee, “Charge-transfer complexes and their applications in optoelectronic devices”, Materials Today Energy Vol.20, pp.100644, 2021. DOI: 10.1016/j.mtener.2021.100644.
[7] N.M. Monezi, R.A. Ando, “Spectroscopic Characterization of Charge Transfer Complexes of TCNE with Aromatic Amines - The First Step of Tricyanovinylation Reaction”, Jouranl Brazilian Chemical Society, Vol.28, No.9, pp.1-8, 2017. DOI: 10.21577/0103-5053.20160329.
[8] S. Stefan, F. Belaj, T. Madl, R. Pietschnig, “A Radical Approach to Hydroxylaminotrichlorosilanes: Synthesis, Reactivity, and Crystal Structure of TEMPO-SiCl3 (TEMPO = 2,2,6,6-Tetramethylpiperidine-N-oxyl)”, European Journal Inorganic Chemistry, pp.289–297, 2010. DOI: 10.1002/ejic.200900969.
[9] G.A.E. Mostafa, T.A. Yousef, S.T. Gaballah, A.M. Homoda, R. Al-Salahi, H.I. AlRabiah, “Quinine Charge Transfer Complexes with 2,3-Dichloro-5,6Dicyano-Benzoquinone and 7,7,8,8-Tetracyanoquinodimethane: Spectroscopic Characterization and Theoretical Study”. Applied Science, Vol.12, pp.978, 2022. DOI: 10.3390/app12030978.
[10] A.M.A. Adam, M.S. Refat, “A comparison of charge-transfer complexes of iodine with some antibiotics formed through two different approaches (liquid-liquid vs solid-solid)”, Journal of Molecular Liquids Vol.329, pp.115560, 2021. DOI: 10.1016/j.molliq.2021.115560.
[11] S.Y. AlQaradawi, H.S. Bazzi, A. Mostafa, El-M. Nour, “Synthesis, spectroscopic and thermal investigations of solid charge-transfer complexes of 1,4,7-trimethyl-1,4,7-triazacyclononane and the acceptors iodine, TCNE, TCNQ and Chloranil, Spectrochimica Acta Part A, Vol.71, pp.1594–1598, 2008. DOI:10.1016/j.saa.2008.06.010.
[12] M. Poddar, Y. Jang, R. Mishra, F. D’Souja, Excited State Electron Transfer in 1,1,4,4-Tetracyanobuta-1,3-Diene (TCBD)- and Cyclohexa-2,5-Diene-1,4-Diylidene-Expanded TCBD–Substituted BODIPY-Phenothiazines Donor-Acceptor Conjugates, Chemistry - A European Journal, Vol.26, Issue.30, pp.6869-6878, 2020. DOI: 10.1002/chem.202000346.
[13] V. Nampally, M.K. Palnati, N. Baindla, M. Varukolu, S. Gangadhari, P. Tigulla, “Charge Transfer Complex between O Phenylenediamine and 2, 3- Dichloro-5, 6-Dicyano-1, 4-Benzoquinone: Synthesis, Spectrophotometric, Characterization, Computational Analysis, and its Biological Applications”, ACS Omega, Vol.7, pp.16689?16704, 2022. DOI: 10.1021/acsomega.2c01177.
[14] A.M.A. Adam, M.S. Hegab, M.S. Refat a d, Hala H. Eldaroti “Proton-transfer and charge-transfer interactions between the antibiotic trimethoprim and several ? ? and ??acceptors: A spectroscopic study”, Journal of Molecular Structure Vol.1231, pp.129687, 2021. DOI: 10.1016/j.molstruc.2020.129687.
[15] E.H. El-Mossalamy, A.S. Amin, A.A. Khalil. “Charge transfer complexes of some oxazolones with iodine”. Spectrochimica Acta Part A, Vol.58, pp.67–72, 2002. DOI: 10.1016/S1386-1425(01)00521-2.
[16] M. Hasani, A. Rezaei, “Spectrophotometric study of the charge-transfer complexes of iodine with antipyrine in organic solvents”, Spectrochimica Acta Part A, Vol.65, pp.1093–1097, 2006. DOI:10.1016/j.saa.2006.02.009.
[17] S. Pullen, L.A. Walker II, R.J. Sension, “Femtosecond studies of the iodine–mesitylene charge-transfer complex”, Journal of Chemistry Physics, Vol.103, Issue.18, pp.7877-7886, 1995.
[18] N. Beyer, B. Abel, G. Steinfeld, V. Lozan, S. Naumov, R. Flyunt, B. Kersting, “Structure and Bonding in Nickel–Thiolate–Iodine Charge-Transfer Complexes”. Chemistry: An European Journal, Vol.22, pp.1–13, 2016. DOI: 10.1002/chem.201604460.
[19] N. Miyajima, T. Akatsu, T. Ikoma, O. Ito, B. Rand, Y. Tanabe, E. Yasuda, “A role of charge-transfer complex with iodine in the modi?cation of coal tar pitch”, Carbon Vol. Vol.38, pp.1831–1838, 2000.
[20] M.S. Refat, S.M. Teleb, Ivo Grabchev, “Charge-transfer interaction of iodine with some polyamidoamines”, Spectrochimica Acta Part A, Vol.61, pp.205–211, 2005.
[21] V. Ulagendran, P. Balu, V. Kannappan, R. Kumar, S. Jayakumar, “In?uence of fused aromatic ring on the stability of charge transfer complex between iodine and some ?ve membered heterocyclic molecules through ultrasonic and spectral studies”, Journal of Molecular Structure, Vol.1141, pp.213-219, 2017. DOI: 10.1016/j.molstruc.2017.03.062.
[22] M. C. Divyasree, K. Vasudevan, K. K. Abdul Basith, P. Jayakrishnan, M. T. Ramesan, K. Chandrasekharan, “Third-Order Nonlinear Optical Properties of Phenothiazine-Iodine Charge Transfer Complexes in Different Proportions” Optics & Laser Technology, Vol.105, pp.94–101, 2018. DOI:10.1016/j.optlastec.2018.02.0.
[23] J. Van der Veen, W. Stevens, “Charge transfer complexes between iodine and various thioanisoles”, Recueil Des Travaux Chimiques Des Pays-Bas, Vol.82, Issue.3, pp.287–297, 1963. DOI:10.1002/recl.19630820313
[24] R. Singh, S. M. V. R. A. Singh, “Some physico-chemical studies on molecular semiconductors based on charge transfer complexes of substituted phenothiazines with iodine”, Chemical Society of Japan, Vol.64, Issue.6, pp. 1938–1943, 1991. DOI: 10.1246/bcsj.64.1938.
[25] B. N. Achar, M. V. Krishnaswamy, “Electron donor-acceptor complexes of phenothiazine with iodine”, Current Science, Vol.58, pp.1019–1022, 1989.
[26] F. Cataldo, “Formation and decomposition of poly(l-lactic acid) charge-transfer complex with iodine: A new molecular switch”, Polymer Degradation and Stability, Vol.176, pp.109155, 2020. DOI: 10.1016/j.polymdegradstab.2020.109155.
[27] X. He, X. Yi, F. Yin, B. Chen, G. Li, H. Yin, “An iodine-treated metal-organic framework with enhanced catalytic activity for oxygen reduction reaction in alkaline electrolyte”, Electrochimica Acta Vol.337, pp.135825, 2020. DOI: 10.1016/j.electacta.2020.135825.
[28] S.K. Kodadi, S. Kovuri, “Spectrophotometric and computational studies of CT complexes of heterocyclic non-steroidal anti-in?ammatory drugs with iodine as ? – Acceptor”, Journal of Molecular Structure, Vol.1202, pp.127271, 2020. DOI: 10.1016/j.molstruc.2019.127271.
[29] B. B. Bhowmik, S. P. Chattopadhyay, “Charge transfer complexes of iodine with aromatic hydrocarbons”, Spectrochimica Acta Part A: Molecular Spectroscopy, Vol.37, Issue.2, pp.135–139, 1981. DOI: 10.1016/0584-8539(81)80100-6.
[30] Z. Daoben (T.-P. Chu), W. Meixiang, L. Mingzhu, G. Dian, Q. Renyuan, “Charge Transfer Complexes of 3, 3?, 5, 5?-Tetra-Phenyl-2, 2?-Dithiodipyranylidine (2, 2? DIPSØ4) with 7, 7?, 8, 8?-Tetracyanoquinodimethane (TCNQ) and Iodine”, Molecular Crystals and Liquid Crystals, Vol.86, Issue.1, pp.57–62, 1982. DOI: 10.1080/00268948208073668.
[31] L.-T. Tang, Y. Wei, Y. Wang, S.-W. Hu, X.-Q. Liu, T.-W. Chu, X.-Y. Wang, “A density functional study on the formation of charge transfer complexes between alkaloids and iodine monochloride”, Journal of Molecular Structure (Theochem), Vol.686, pp.25–30, 2004. DOI:10.1016/j.theochem.2004.07.026.
[32] N. Alizadeh, A. Roomiani, “Kinetic study of charge transfer complexes of iodine with some crown ethers in nonaqueous solvents”, Journal of the Chilean Chemical Society, Vol.57, Issue.2, pp.1130–1133, 2012. DOI: 10.4067/s0717-97072012000200016.
[33] D.A. Kumar, S. Kalainathan, R.S. Babu, “Growth and characterization of 1,1,4,4-tetraphenyl-1,3-butadiene organic scintillation crystal”, Journal of Materials Science: Materials in Electronics, Vol.30, pp.10571–10578, 2019. DOI: 10.1007/s10854-019-01401-1.
[34] L. Rintoul, A.S. Micallef, S.E. Bottle, “The vibrational group frequency of the N–O• stretching band of nitroxide stable free radicals”, Spectrochimica Acta Part A, Vol.70, pp.713–717, 2008. DOI:10.1016/j.saa.2007.08.017.
[35] F. Yakuphanoglu. M. Arslan, “The fundamental absorption edge and optical constants of some charge transfer compounds”, Optical Materials, Vol.27, pp.29–37, 2004. DOI: 10.1016/j.optmat.2004.01.017
[36] M. Hosam, M. Gomaa, I.S. Yahia, H.Y. Zahran, “Correlation between the static refractive index and the optical bandgap: Review and new empirical approach”. Physica B Vol.620, pp.413246, 2021. DOI: org/10.1016/j.physb.2021.413246.
[37] N.M. Ravindra, P. Ganapathy, J. Choi, “Energy gap–refractive index relations in semiconductors – An overview”. Infrared Physics and Technology, Vol.50, pp.21–29, 2007. DOI: 10.1016/j.infrared.2006.04.001.
[38] P. Herve, L.K.J. Vandamme, “General relation between refractive index and energy gap in semiconductors”, Infrared Physics and Technology, Vol.35, Issue.4, pp.609-615, 1994. DOI: 10.1016/1350-4495(94)90026-4.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation