Full Paper View Go Back

Theory for Dynamical Structure Factors of Liquid Potassium at Melting Temperature

Grima Dhingra1

  1. Dept. of Physics, Maharshi Dayanand University, Rohtak, Haryana, India.

Section:Research Paper, Product Type: Journal-Paper
Vol.12 , Issue.1 , pp.1-7, Mar-2025


Online published on Mar 31, 2025


Copyright © Grima Dhingra . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Grima Dhingra, “Theory for Dynamical Structure Factors of Liquid Potassium at Melting Temperature,” Journal of Physics and Chemistry of Materials, Vol.12, Issue.1, pp.1-7, 2025.

MLA Style Citation: Grima Dhingra "Theory for Dynamical Structure Factors of Liquid Potassium at Melting Temperature." Journal of Physics and Chemistry of Materials 12.1 (2025): 1-7.

APA Style Citation: Grima Dhingra, (2025). Theory for Dynamical Structure Factors of Liquid Potassium at Melting Temperature. Journal of Physics and Chemistry of Materials, 12(1), 1-7.

BibTex Style Citation:
@article{Dhingra_2025,
author = {Grima Dhingra},
title = {Theory for Dynamical Structure Factors of Liquid Potassium at Melting Temperature},
journal = {Journal of Physics and Chemistry of Materials},
issue_date = {3 2025},
volume = {12},
Issue = {1},
month = {3},
year = {2025},
issn = {2347-2693},
pages = {1-7},
url = {https://www.isroset.org/journal/JPCM/full_paper_view.php?paper_id=3820},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/JPCM/full_paper_view.php?paper_id=3820
TI - Theory for Dynamical Structure Factors of Liquid Potassium at Melting Temperature
T2 - Journal of Physics and Chemistry of Materials
AU - Grima Dhingra
PY - 2025
DA - 2025/03/31
PB - IJCSE, Indore, INDIA
SP - 1-7
IS - 1
VL - 12
SN - 2347-2693
ER -

1 Views    2 Downloads    0 Downloads
  
  

Abstract :
A microscopic theoretical approach is employed to calculate the detailed dynamical structure factors of an interacting fluid of potassium atoms at its melting temperature. The theoretical investigation is carried out at 338 K, where 0.845 grams of the interacting particles occupy one cubic centimetres of the fluid. The calculations are performed over a range of ? (wave vector): 0.3 Å-1 to 3.0 Å-1. This theoretical approach utilizes the inter-particle interactions present among the constituent particles of the liquid to calculate various dynamical quantities including the dynamical structure factor and the current-current correlation function. The predicted dynamical functions in turn allow for the determination of key transport properties; diffusion coefficient, and longitudinal viscosity and other significant properties, such as collective mode frequencies and the sound velocity. These properties are reported for the entire ?–range. The modified microscopic theory, therefore, is emerged as an inclusive method, for calculating the complete dynamics of liquid potassium at the melting temperature by incorporating inter-particle interactions.

Key-Words / Index Term :
Equilibrium Dynamics, Dynamical structure factor, Inter-particle interaction, Current-current correlation function, Diffusion coefficient, Modified microscopic theory

References :
[1] Landau and Plaezek “Structure of the undisplaced scattering line”, Phys. Z. Sowj. Un., Vol.5, pp.172, 1934.
[2] I.M. de Schepper and E.G.D. Cohen, “Collective modes in fluids and neutron scattering”, Phys. Rev. A , Vol.22, pp.287-289, 1980. ttps://doi.org/10.1103/PhysRevA.22.28
[3] A. Rahman, “Correlations in the Motion of Atoms in Liquid Argon”, Phys. Rev. A, Vol.136, pp.405-411, 1964. https://doi.org/10.1103/PhysRev.136.A405
[4] J. P. Hansen and I. R. McDonald, Theory of simple liquid, Academic, London 1986. ISBN-13: 978-0123870322
[5] M. Sayem, R. D. Murphy, ”Temperature Dependence of Transport Properties of Liquid Sodium and Potassium”, Phy. Chem. Liq., Vol.40, No.4, pp.469-475, 2002.
[6] C. Chen, H. Eyring, ”Significant Liquid-Structure Theory of Viscosity and Self-Diffusion of the Alkali Metals”, Proc. Nat. Acad. Sci., USA, Vol.69, pp.1342-1345, 1972.
[7] J.R.D. Copely and J.M. Rowe, “Short-Wavelength Collective Excitations in Liquid Rubidium Observed by Coherent Neutron Scattering”, Phys. Rev. Letters, Vol.32, pp.49-52, 1973. https://doi.org/10.1103/PhysRevLett.32.49
[8] C. Morkel and W. Glaser, “Single Particle Motion in Liquid Sodium”, Phys Rev. A, Vol.33, pp.3383-3389, 1986. https://doi.org/10.1103/PhysRevA.33.3383
[9] E. Burkel, Inelastic Scattering of x-rays with very high energy resolution, Springer-Verlag, Berlin, 1991. ISBN-13: ? 978-3662150092
[10] M. Monaco,T. Scopigno, G. Monaco et al., ”Collective Dynamics in Molten Potassium: An Inelastic Scattering Study”, Journal of chemical physics, Vol.120, No.17, pp.8089-8094, 2004.
[11] J. Hubbard and J.L. Beeby, “Collective motion in liquids”, J. Phys. C, Vol.2, pp.556-574, 1969. https://doi.org/10.1088/0022-3719/2/3/318
[12] S.P. Tewari and Surya P. Tewari, “Theory of collective motion in liquids”, J. Phys. C: Solid State Physics, Vol.8, pp.L569-L572, 1975. https://doi.org/10.1088/0022-3719/8/24/001
[13] S.P. Tewari and Surya P. Tewari, “Theory of collective motion in liquids”, J. Phys. C: Solid State Physics, Vol.8, pp.L569-L572, 1975. https://doi.org/10.1088/0022-3719/8/24/001
[14] S.P. Tewari, J. Sood and P. Tandon, “Collective dynamics of liquid alkali metals Cs and Rb”, J. Non-Crystalline Solids, Vol.281, pp.72-80, 2001. https://doi.org/10.1016/S0022-3093(00)00437-3
[15] S.P. Tewari and Surya P. Tewari, “Theory of long wavelength collective motion in liquids”, Phys. Letters, Vol.65A, pp.241-243, 1978. https://doi.org/10.1016/0375-9601(78)90162-7
[16] S.P. Tewari, G. Dhingra and P. Silotia, “Collective Dynamics of a Nanofluid: Fullerene, C60”, International J. of Mod. Phys. B., Vol.24, pp.4281-4292, 2010. https://doi.org/10.1142/S0217979210055974
[17] S.P. Tewari, and J. Sood, “Collective Dynamics of Liquid Al”, Modern Phys. Letters, Vol.18, pp.811-816, 2004. https://doi.org/10.1142/S0217984904007293
[18] G. Dhingra, “Dynamical Modes in Liquid Mercury along Liquid-Vapour Curve”, International Journal of Scientific Researchin Multidisciplinary Studies, Vol.8, Issue.9, pp.01-05, 2022. https://doi.org/10.26438/ijsrpas/v8i9.15
[19] S.P. Tewari and Surya P. Tewari, “Zero frequency dynamical structure factor of liquids”, Phys. Letters, Vol. 56A, pp.99-100, 1976. https://doi.org/10.1016/0375-9601(76)90157-2
[20] G. Dhingra, “Microscopic Transport Phenomena in a Liquid Alkali Metal: K39”, International Journal in Scientific Research in Physics and Applied Sciences, Vol.7, Issue.1, pp.56-59, 2019. https://doi.org/10.26438/ijsrpas/v7i1.5659
[21] S.P. Tewari, G. Dhingra, P. Silotia and J. Sood, “Theory of collective dynamics of liquid polyvalent metal: Hg”, Phys. Letters A, Vol.368, pp.412-418, 2007. https://doi.org/10.1016/j.physleta.2007.04.035
[22] G. Dhingra, “Correlated Motion of Particles in Liquid Sodium Metal”, International Journal of Scientific Research and Reviews, Vol.8, Issue.1, pp.1085-1091, 2019.
[23] S.P. Tewari, G. Dhingra, P. Silotia and J. Sood, “Microdynamics of a monoatomic liquid metal”, J. Non-Crystalline Solids Vol.355, pp. 2522-2527, 2009. https://doi.org/10.1016/j.jnoncrysol.2009.08.014
[24] J.M.G. Mirannda, “A molecular dynamics Study of liquid potassium at 340 K”, J. Phys. F: Met. Phys., Vol.16, pp.1-10, 1986. https://doi.org/10.1088/0305-4608/16/1/007
[25] A.J. Greenfeld, J. Wellendorf and N. Wisser, “X-Ray Determination of the Static Structure Factor of Liquid Na and K”, Phys. Rev. A, Vol.4, pp.1607-16, 1971. https://doi.org/10.1103/PhysRevA.4.1607
[26] J.L. Bretonnet, N. Jakse, “Use of integral-equation theory in determining the structure and thermodynamics of liquid alkali metals”, Phys. Rev. B, Vol.50, pp.2880, 1994. https://doi.org/10.1103/PhysRevB.50.2880
[27] M.J. Hujiben and W. van der Lugt, “X-ray and Neutron Diffraction from Liquid Alkali Metals”, Acta Cryst. A, Vol.35, pp.431-445, 1979. https://doi.org/10.1107/S0567739479001042
[28] A. D. Pasternak, ”Sound-wave velocities in liquid alkali metals studied at temperatures up to 1500c and pressures up to 0.7 Gpa”, Mater. Sci. Eng. 3, pp.65, 1969. https://doi.org/10.1016/0025-5416(68)90019-0

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation