Full Paper View Go Back

A Theoretical Evaluation of the Energy and Power Density of Nickel Hydroxide for Hybrid Supercapacitor Applications

S.E Umoru1

Section:Research Paper, Product Type: Journal-Paper
Vol.11 , Issue.4 , pp.25-38, Dec-2024


Online published on Dec 31, 2024


Copyright © S.E Umoru . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S.E Umoru, “A Theoretical Evaluation of the Energy and Power Density of Nickel Hydroxide for Hybrid Supercapacitor Applications,” World Academics Journal of Engineering Sciences, Vol.11, Issue.4, pp.25-38, 2024.

MLA Style Citation: S.E Umoru "A Theoretical Evaluation of the Energy and Power Density of Nickel Hydroxide for Hybrid Supercapacitor Applications." World Academics Journal of Engineering Sciences 11.4 (2024): 25-38.

APA Style Citation: S.E Umoru, (2024). A Theoretical Evaluation of the Energy and Power Density of Nickel Hydroxide for Hybrid Supercapacitor Applications. World Academics Journal of Engineering Sciences, 11(4), 25-38.

BibTex Style Citation:
@article{Umoru_2024,
author = {S.E Umoru},
title = {A Theoretical Evaluation of the Energy and Power Density of Nickel Hydroxide for Hybrid Supercapacitor Applications},
journal = {World Academics Journal of Engineering Sciences},
issue_date = {12 2024},
volume = {11},
Issue = {4},
month = {12},
year = {2024},
issn = {2347-2693},
pages = {25-38},
url = {https://www.isroset.org/journal/WAJES/full_paper_view.php?paper_id=3775},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/WAJES/full_paper_view.php?paper_id=3775
TI - A Theoretical Evaluation of the Energy and Power Density of Nickel Hydroxide for Hybrid Supercapacitor Applications
T2 - World Academics Journal of Engineering Sciences
AU - S.E Umoru
PY - 2024
DA - 2024/12/31
PB - IJCSE, Indore, INDIA
SP - 25-38
IS - 4
VL - 11
SN - 2347-2693
ER -

20 Views    18 Downloads    4 Downloads
  
  

Abstract :
Achieving high energy density has remains a significant challenge in the development of supercapacitos. Supercapacitors that are hybrid, which incorporate the advantages of supercapacitors and batteries, have emerged a viable way to overcome the energy density restriction. The functionality of hybrid supercapacitor is built upon the type of materials that were utilized in its terminals. As a result, attention has been drawn to exploring various materials that can increase the energy performance of hybrid supercapacitor. This study has employed a theoretical approach, first principle calculation to calculate the parameters needed to evaluate the energy and power density of nickel hydroxide in order to assess its performance in hybrid supercapacitors. Base on the calculations, The power density, specific capacitance, and energy density were found to be 1334.35Fg-1, 450.89Whkg-1 and 240.06Wkg-1 respectively. These results are well compared with the experimental results and have shown the viability of nickel hydroxide in hybrid supercapacitors.

Key-Words / Index Term :
Density functional Theory, Energy density, Evaluation, First principle, Hybrid supercapacitors, Nickel hydroxide, Performance, Power density

References :
[1] C. Madan, S. Kumari, A. Halder, “Metal Oxides for Future Electrochemical Energy Storage Devices: Batteries and Supercapacitors,” Optical Properties of Metal Oxide Nanostructures . Vol. 26, pp. 291–330, 2023
[2] D.Puja , L. Bharti , J. Halder , S. Priya , Amreesh Chandra , “Electrochemically activated Mn3O4 nanoparticles as higher performing electrode than MnO2 for Al-ion batteries – An insight into the crystallographic changes caused by Al3+ intercalation,” Electrochimica Acta, Vol. 469, pp. 143248, 2023. https://doi.org/10.1016/j.electacta.2023.143248.
[3] T. Abdullah , S. I. Shamsah , I. A. Shaaban , M. Akhtar , S. Yousaf , “Engineering energy storage properties of rGO based Fe2O3/CuO/PANI quaternary nanohybrid as an ideal electroactive material for hybrid supercapacitor application,” Synthetic Metals. Vol. 299, pp. 117472, 2023.
[4] L. Luo , Y. Lan, Q. Zhang , J. Deng , L. Luo , Zeng , H. Gao ,W. Zha , “A review on biomass-derived activated carbon as electrode material for energy storage supercapacitors,” Journal of Energy Storage. Vol. 55, Part D, pp.105839, 2022. https://doi.org/10.1016/j.est.2022.105839.
[5] S. Li, T. Mo, L. Chen, F. Zhang, S. Jamil, Y. Lu, Q. Cai , ” Hierarchical MgAl-layered double hydroxide growth on porous MgO template for pollution removal,” Environmental Progress and Sustainable Energy. Vol. 41, Issue 6, pp. e13907, 2022. https://doi.org/10.1002/ep.13907
[6] L. Liu, W. Yih-Chyng, L. Huang, K. Liu, B.Duployer, P. Rozier, Pierre-L.Taberna, Patrice Simon , “Alkali Ions Pre-Intercalated Layered MnO2 Nanosheet for Zinc-Ions Storage,” Advanced Energy Materials. Vol.11, Issue 31, pp. 2101287. 2021, DOI: https://doi.org/10.1002/aenm.202101287.
[7] A. Ayyaz, G. Murtaza, A. Ahmed, M. Shahid, A. Usman, G. Farid, M. Naeem, “ Comparative DFT-based investigation of physical properties of Cs2MBiBr6 (M= Ag, Cu, and Au) Perovskites: Sustainable materials for renewable energy,” Computational Condensed Matter, Vol. 38, pp. e00885, 2024
[8] P. Pitriana , T. D. K. Wungu , Herman , R. Hidayat, “The characteristics of band structures and crystal binding in all-inorganic perovskite APbBr3 studied by the first principle calculations using the Density Functional Theory (DFT) method,” Results in Physics, Vol. 15, pp. 102592, 2019.
[9] N. Weerasekera, S. Cao, Laksman Perera, “Functional Property Evaluation of Crystalline Materials using Density Functional Theory: A Review”, European Journal of Applied Physics. Vol. 4,pp. 2684 – 4451, 2022.
[10] Li, W., Huang, Z., Jia, Y., Cui, Y., Shi, P., Li, T., ... & Lou, X. , “Sulfate assisted synthesis of ?-type nickel hydroxide nanowires with 3D reticulation for energy storage in hybrid supercapacitors,” Materials Chemistry Frontiers, Vol. 6, Issue 1, pp. 94-102, 2022
[11] Jiang, W., Yu, D., Zhang, Q., Goh, K., Wei, L., Yong, Y., Jiang, R., Wei, J. and Chen, Y., “Ternary hybrids of amorphous nickel hydroxide–carbon nanotube?conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life,” Advanced Functional Materials, Vol. 25, Issue 7, pp. .1063-1073, 2015.
[12] Brisse, Anne-Lise, P. Stevens, G. Toussaint, O. Crosnier, T. Brousse. "Ni (OH) 2 and NiO based composites: battery type electrode materials for hybrid supercapacitor devices." Materials Vol. 11, no. 7, pp. 1178, 2018.
[13] A. Azizitorghabeh, R. Golmohammadzadeh, F. Faraji, H. Mahandra, “ Methods and Technologies for Recycling Batteries,” Handbook of Energy Materials, pp 1–34, 2022.
[14] A.G. Olabi , Q.Abbas , A. A. Makky, “Supercapacitors as next generation energy storage devices: Properties and applications,” Energy, Vol.248, pp. 123617, 2022.
[15] H.Zheng-Hua , G. Jian-Fei, K. Ling-Bin, “NiGa2O4 Nanosheets in a Microflower Architecture as Anode Materials for Li-Ion Capacitors,” ACS Appl. Nano Mater. Vol. 2, Issue 10, pp. 6238–6248, 2019.
[16] Bokhari S. W, A. H. Siddique, H. Pana, Y. Li, M. Imtiaz, Z. Chen, S. M. Zhu, D. Zhang, “Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective,” RSC Adv, Vol.7, pp. 18926-18936, 2017.
[17] Feo, D. T. Pham, Y. H. Lee, “Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices,” ChemSusChem, Vol. 8, Issue14, pp. 2284-2311, 2015
[18] K. Leng, F. Zhang, L. Zhang, T. Zhang, Y. Wu,, Y. Lu, Y. Huang, Y. Chen, “ Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance,” Nano Research, Vol.7, pp. 581-592, 2013.
[19] H. Zhang, X. Xu, H. Wang, Y. Lyu, X. Liu, Y. Zhao, J. Shi, W. Liu, E. Paek, D. Mitlin, “Lithium Ion Capacitor with Identical Carbon Electrodes Yields 6 s Charging and 100?000 Cycles Stability with 1% Capacity Fade,” ACS Sustainable Chem. Eng. Vol.7, Issue 2, pp. 2867–2877, 2019.
[20] Lemian, Diana, F. Bode, "Battery-supercapacitor energy storage systems for electrical vehicles: a review,” Energies, Vol.15, Issue 15, pp. 5683, 2022.
[21] D Silva, S. Filgueira, J. J.i Eckert, F. C. Corrêa, F. L. Silva, C.A.S .Ludmila, F. G. Dedini. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle." Applied Energy Vol. 324, pp.119723, 2022.
[22] Atawi, E. Ibrahem., A. Al-Shetwi, M A. Magableh, O. H. Albalawi. "Recent advances in hybrid energy storage system integrated renewable power generation: Configuration, control, applications, and future directions," Batteries , Vol. 9, Issue 1, pp.29, 2022.
[23] Panchu, S. J., Raju, K. Swart, H. C, “Emerging Two–Dimensional Intercalation Pseudocapacitive Electrodes for Supercapacitors,” ChemElectroChem, pp. e202300810, 2024.
[24] Chen, G. Z,.” Supercapacitor and supercapattery as emerging electrochemical energy stores,” International Materials Reviews Vol. 62 Issue 4, pp. 173–202.2017 doi:10.1080/09506608.2016.1240914.
[25] Sharma, Sakshi, P. Kadyan, R. K. Sharma, N. Kumar, S. Grover. "Progressive updates on nickel hydroxide and its nanocomposite for electrochemical electrode material in asymmetric supercapacitor device." Journal of Energy Storage, Vol. 87, pp. 111368, 2024.
[26] Khan, A. Hafsah, M. Tawalbeh, B. Aljawrneh, W. Abuwatfa, A. Al-Othman, H. Sadeghifar, A. G. Olabi. "A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges." Energy, pp. 131043, 2024
[27] Bernard, Patrick, M. Lippert. "Nickel–cadmium and nickel–metal hydride battery energy storage." In Electrochemical energy storage for renewable sources and grid balancing, pp. 223-251, 2015.
[28] Sharma, Sakshi, P. Kadyan, R. K. Sharma, N. Kumar, S. Grover. "Progressive updates on nickel hydroxide and its nanocomposite for electrochemical electrode material in asymmetric supercapacitor device." Journal of Energy Storage, Vol. 87, pp. 111368, 2024.
[29] Kumar, Pushpendra, R. Singhal, A. K. Sharma, A. K. Mukhopadhyay. "Structural, optical, and morphological study of iron-nickel co-doped calcium hydroxide nanoparticles." Open Ceramics , pp. 100600, 2024
[30] Zhang, Liuyang, Diwen Shi, Tao Liu, Mietek Jaroniec, and Jiaguo Yu. "Nickel-based materials for supercapacitors." Materials Today, Vol. 25, pp. 35-65, 2019
[31] S. Hall J. David. D. Lockwood, C. Bock, R.B. MacDougall, "Nickel hydroxides and related materials: a review of their structures, synthesis and properties." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 471, Issue 2174, pp. 20140792, 2015
[32] Chaudhari, P. Vilas, K. Rajput, S. M. Roy, T. K. Chaudhuri, D. R. Roy, "Experimental and first-principles investigation on the structural, electronic and antimicrobial properties of nickel hydroxide nanoparticles." Journal of Physics and Chemistry of Solids Vol. 160, pp. 110367, 2022
[33] Singh, Rajinder, Sanjeev Kumar, R. K. Bedi, Vibha Saxena, D. K. Aswal, and Aman Mahajan. "Optimization of Ni2+/Ni3+ ratio in reduced graphene oxide/nickel oxide nanohybrids for platinum free dye sensitized solar cells." Journal of Physics and Chemistry of Solids, Vol. 123, pp. 191-197, 2018
[34] Hall, S. David., J. D. Lockwood, C. Bock, R. B. MacDougall, "Nickel hydroxides and related materials: a review of their structures, synthesis and properties." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 471, Issue 2174, pp. 20140792., 2015
[35] K. Harun, N. A.Salleh, B. Deghfel, M. K. Yaakob, A. A. Mohamad, “DFT+ U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review,” Results in Physics, Vol. 16, pp. 102829.
[36] Giannozzi P, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," Journal of Physics: Condensed matter,” vol. 21, pp. 395502, 2009.
[37] M. Landstra, K. V. Ravi, "Resistivity of chemical vapor deposited diamond films," Applied Physics Letters, vol. 55, pp. 975-977,.1989
[38] M. Endo, T. Hayashi, S.-H. Hong, T. Enoki, and M. S. Dresselhaus, "Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite," Journal of Applied Physics, vol. 90, pp. 5670-5674, 2001.
[39] H. Yoshizumi, "Correlation Problem in Many?Electron Quantum Mechanics. II. Bibliographical Survey of the Historical Development with Comments," Advances in Chemical Physics, Vol. 2, pp. 323-366, 1959
[40] R. Prasad , “Electronic Structure of Materials,” ser. Chapman & Hall book. Taylor & Francis. Pp. 1-25,2013.
[41] R. Martin , “Electronic Structure: Basic Theory and Practical Methods,” Cambridge University Press, 2020
[42] Maxwell Technologies, “125V Heavy Transportation Module (BMOD0063 P125 B08), 2018
[43] H. Bode, K. Dehmelt, J. Witte, J. Zur kenntnis,”der nickelhydroxidelektrode—I. Über das nickel(II)-hydroxidhydrat,” Electrochim. Acta , Vol. 11, pp. 1079–1087, 2020
[44] R. Haunschild, B. Andreas, F. Bernie , “A comprehensive analysis of the history of DFT based on the bibliometric method,” RPYS, Vol. 72, pp. 5249, 2019
[45] C. Wu , J. Cai , Q. Zhang , Zhou X, Zhu Y, Li L, Shen P, Zhang K,)"Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors,” Electrochimica Acta, Vol. 169, pp. 202–209,2015
[46] W. C. Witt, B.G. del Rio, J.M. Dieterich, E.A. Carter, “Orbital-free density functional theory for materials research,” J.Mater. Res, Vol. 33, pp. 777, 2018
[47] Rabouw F.T and C. de Mello Donega, “Handbook of Photoactive Semiconductor Nanocrystal Quantum Dots”, Springer, , pp. 1–30, 2017
[48] M. Ballandonne, “the historical roots (1880-1950) of recent contributions (2000-2017) to ecological economics: insights from reference publication year spectroscopy,” J econs methodal, Vol. 26, pp. 307-326, 2018
[49] W. Marx, R. Haunschild, A. Thor, L. Bornmann, “A bibliometric approach based on reference publication year spectroscopy,” Scientometrics, Vol. 110, pp. 335-353. https//doi.org/10.1007/s11192-0162177-x
[50] C.Shiyue ,L. Qiming , H. Che, H. Zhu, Y. Liu, “A bimetallic induced enhanced 3D electron transport network supported by micro constrain area of balls-in-ball structure used for high performance sodium storage,” Chemical Engineering Journal, Vol. 470, pp. 144277 , 2023
[51] W. Marx, L. Bornmanni, “Change of perspective:bibliometrics from the point of view of cited reference-a literature overview on approaches to the evaluation of cited references in bibliometrics,” Scientrometrics Vol. 109, pp. 1397-1415, 2016, https:doi.org/10.1007/s11192-016-2111-2,
[52] S.J.Smith, B.T Sutcliffe, B, ”The development of computational chemistry in the united kingdom,” A Reviews in Computational Chemistry, Vol.10, pp. 271–316, 2020.
[53] H. Zhang, B. Chen, J. F. Banfield, G.A. Waychunas, “Atomic structure of nanometer-sized amorphous TiO2,” Physical Review B, Vol. 78, Issue 21, pp. 214106, 2018.
[54] P. J. Aurora, I. David , A. Gross, B. Kieron, “DFT: A Theory Full of Holes?”, Department of Chemistry, University of California, 1102 Natural Sciences 2, pp. 92697-2025, 2014.
[55] Parr R G and Yang W, “Density Functional Theory of Atoms and Molecules”, Oxford: Oxford University Press, 1989
[56] G. R. Degaga, Pandey, C. Gupta, L. Bharadwaj, ‘Tailoring of the electronic property of Zn-BTC metal–organic framework via ligand functionalization: An ab initio investigation,” RSC Adv.Vol. 9, pp. 14260, 2019.
[57] M. Frigo, S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE, Vol. 93, pp. 216–31, 2018
[58] S.R.Bahn, K. W. Jacobsen, “An object-oriented scripting interface to a legacy electronic-structure codeComput,” Sci. Eng.pp. 4 56, 2016.
[59] J. E. Olson,” Surface-Enhanced Raman and Hyper-Raman Scattering: From Fundamentals of Nonlinear Light Scattering to Practical Analytical Detection,” University of Notre Dame, 2021.
[60] R.A. Kendall, E. Aprà, D.E. Bernholdt, E. J. Bylaska, E. M. Dupuis, G. I. Fann., ..., A. T. Wong, “High performance computational chemistry: An overview of NWChem a distributed parallel application,” Computer Physics Communications, 128(1-2), 260-283, 2020.
[61] D.B.Boyd, K. B. Lipkowitz, T. R. Cundari, “Reviews in Computational Chemistry,” Wiley-VCH; 2008.
[62] D. Marx, J. Hutter, “Modern Methods and Algorithms of Quantum Chemistry,” FZ J¨ulich,” John von Neumann Institute for Computing, pp 301–449, 2017.
[63] N. Tuyen , B. Micheal , M. C. Joao, M. Fatima, “Layer Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors,” Scientific reports, Vol. 7, Issue 1, pp. 39980, 2017
[64] P. Palanichamy, R. Angamuthu, K. Ramya, S. Maheswari, R. Kunaravel, S.Arunachalam, “MnCo2O4@Ni(OH)2 microspheres as High-performance electrodes for asymmetric Supercapacitors,” Journal of Materials Today Energy, Vol. 20, pp. 100579, 2021.
[65] Y. L. Huang, Y. X. Zeng, M. H. Yu, P. Liu, Y. X. Tong, F. L. Cheng, X. H. Lu., “Recent smart methods for achieving high-energy asymmetric supercapacitors,” Small Methods Vol. 2, Issue 2, pp. 1700230, 2018.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation