Full Paper View Go Back

MnO2-ZnO Hexagonal Nanomaterials: Characterization and High Performance Humidity Sensing Application

Vikas Kumar Verma1 , Narendra Kumar Pandey2

Section:Research Paper, Product Type: Isroset-Journal
Vol.6 , Issue.6 , pp.69-79, Dec-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrpas/v6i6.6979


Online published on Dec 31, 2018


Copyright © Vikas Kumar Verma, Narendra Kumar Pandey . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Vikas Kumar Verma, Narendra Kumar Pandey, “MnO2-ZnO Hexagonal Nanomaterials: Characterization and High Performance Humidity Sensing Application,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.6, Issue.6, pp.69-79, 2018.

MLA Style Citation: Vikas Kumar Verma, Narendra Kumar Pandey "MnO2-ZnO Hexagonal Nanomaterials: Characterization and High Performance Humidity Sensing Application." International Journal of Scientific Research in Physics and Applied Sciences 6.6 (2018): 69-79.

APA Style Citation: Vikas Kumar Verma, Narendra Kumar Pandey, (2018). MnO2-ZnO Hexagonal Nanomaterials: Characterization and High Performance Humidity Sensing Application. International Journal of Scientific Research in Physics and Applied Sciences, 6(6), 69-79.

BibTex Style Citation:
@article{Verma_2018,
author = {Vikas Kumar Verma, Narendra Kumar Pandey},
title = {MnO2-ZnO Hexagonal Nanomaterials: Characterization and High Performance Humidity Sensing Application},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {12 2018},
volume = {6},
Issue = {6},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {69-79},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1017},
doi = {https://doi.org/10.26438/ijcse/v6i6.6979}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i6.6979}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=1017
TI - MnO2-ZnO Hexagonal Nanomaterials: Characterization and High Performance Humidity Sensing Application
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - Vikas Kumar Verma, Narendra Kumar Pandey
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 69-79
IS - 6
VL - 6
SN - 2347-2693
ER -

780 Views    321 Downloads    242 Downloads
  
  

Abstract :
MnO2 doped nanostructured zinc oxide was synthesized by solid state reaction route. The prepared material was characterized by X-ray diffraction, scanning electron microscope and UV-Vis absorption spectroscopy. The doping of MnO2 in ZnĂ’ enhanced the crystallization and decreased the crystallite size. Surface morphology of the sensing material showed that the hexagonal shaped particles were uniformly distributed in zinc oxide that left large number of pores. These pores acted as humidity adsorption sites. With increase in the concentration of MnO2, the pores also increased. The optical band gap of pure ZnO was 4.05 eV. The value of band gap decreased with increase in the MnO2 doping concentration. The average sensitivity of undoped zinc oxide was 3400 KΩ/%RH. The sensitivity of the sensing element increased with increase in the doping concentration. Sensitivity of MnO2 doped ZnO composite is more than four times the sensitivity of pure zinc oxide at annealing temperature 600oC.

Key-Words / Index Term :
Humidity Sensor; Zinc oxide; X-ray diffraction; Scanning electron microscopy; UV-Vis Spectroscopy.

References :
[2] S. Muto, O. Suzuki, O. Amano, M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring”, Meas.Sci. Technol.,Vol.14, pp. 740–746, 2003.
[3] N. K. Pandey, K. Tiwari, A. Roy, A. Mishra, A. Govindan. “Ag‐Loaded WO3 Ceramic Nanomaterials: Characterization and Moisture Sensing Studies”, International Journal of Applied Ceramic Technology, Vol.10, Issue.1, pp. 150-159, 2013.
[4] B. C. Yadav, N. K. Pandey, A. K. Srivastava, P. Sharma, “Optical humidity sensors based on titania Films fabricated by sol-gel and thermal evaporation”, Journal of Measurement Science and Technology, Vol.18, No.1, pp. 260-264, 2007.
[5] X. S. Niu, W. P. Du, W. M. Du, “Preparation and gas sensing properties of ZnM2O4 (M = Fe, Co, Cr)”, Sensors and Actuators B, Vol.99, Issue. 2-3, pp. 405-415, 2004.
[6] Y. M. Zhang, Y. T. Lin, J. L. Chen, J. Zhang, Z. Q. Zhu, Q. J. Liu, “A high sensitivity gas sensor for formaldehyde based on silver doped lanthanum ferrite”, Sensors and Actuators B, Vol. 190, pp.171– 176, 2014.
[7] B. Levasseur, S. Kaliaguine, “Methanol oxidation on LaBO3 (B = Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding”, Applied Catalysis A, Vol.343, Issue. 1-2, pp. 29–38, 2008.
[8] J. W. Yoon, M. L. Grilli, E. D. Bartolomeo, R. Polini, E. Traversa, “The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes”, Sens. Actuators B, Vol.76, Issue. 1-3, pp. 483–488, 2001.
[9] T. Ishihara, M. Ando, M. Enoki, Y. Takita, “Oxide ion conductivity in La(Sr)Ga(Fe,Mg)O3 and its application for solid oxide fuel cells”, Journal of Alloys and Compounds, Vol.408, pp. 507–511, 2006.
[10] X. J. Zhang, H. B. Liang, F. X. Gan, “Novel anion exchange method for exact antimony doping control of stannic oxide nanocrystal powder”, Journal of America Chemistry Society, Vol.89, Issue. 3, pp. 792−798, 2006.
[11] Y. Guo, J. Wang, R. Huang, “Electrical and optical properties transparent and conductive Sb-doped SnO2 films”, Journal of Inorganic Materials, Vol.17, pp. 131−138, 2002.
[12] B. K. Meyer, “Bound exciton and donor–acceptor pair recombinations in ZnO”, Physica Status Solidi B, Vol.241, Issue. 2, pp. 241-231, 2004.
[13] O(Ed.). Madelung, “Semiconductors “Group IV Elements and III—V Compounds)”, Data in science and technology. Springer‐Verlag Berlin, ISBN 3‐540‐53150‐5, 164 Seiten, brosch., Preis.; Vol.78, 1991.
[14] Y. Chen, D. Bagnall, T. Yao, “ZnO as a novel photonic material for the UV region”, Mater. Sci. Eng. B, Vol.75, Issue. 2-3, pp. 190, 2000.
[15] N. J. Dayan, S. R. Sainkar, R. N. Karekar, R. C. Aiyer, “Formulation and characterization of ZnO:Sb thick-film gas sensors”, Thin Solid Films,Vol.325, Issue. 1-2, pp. 325-254, 1998.
[16] N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, L. Sakaguchi, K. Koumoto, “Low‐temperature fabrication of light‐emitting ZnO micropatterns using self‐assembled monolayers”, Adv. Mater, Vol.14, Issue. 6, pp. 418, 2002.
[17] K. L. Chopra, S. R. Das, “Thin Film Solar Cells” (New York: Plenum), Vol.12, Issue. 2-3, pp. 321, 1983.
[18] S. Salam, M. Islam, M. Alam, A. Akram, M. Ikram, A. Mahmood, M. Khan, M. Mujahid, “The effect of processing conditions on the structural morphology and physical properties of ZnO and CdS thin films produced via sol–gel synthesis and chemical bath deposition techniques”, Adv. Nature Sci. Nanosci. Nanotechnol., Vol.2, pp. 045001, 2011.
[19] N. T. Hung, N. D. Quang, S. Bernik, “Electrical and microstructural characteristics of ZnO–Bi2O3-based varistors doped with rare-earth oxides”, Mater. Res., Vol.16, Issue. 10, pp. 2817, 2001.
[20] D. T. Chieng, P. D. Long, N. H. Lam, P. V. Hoi, “Synthesis, characterization and properties of Mn-doped ZnO nanocrystals”, Adv. Nature Sci.: Nanosci. Nanotechnol., Vol.3, No. 3, pp. 035005, 2012.
[21] L. F. Dong, L. Z. Cui, Z. K. Zhang, “Gas sensing properties of nano-ZnO prepared by arc plasma method”, Nanostruct. Mater., Vol.8, pp. 815, 1997.
[22] J. J. Wu, S. C. Liu, “ Low‐temperature growth of well‐aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater., Vol.14, Issue. 3, pp. 215, 2002.
[23] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnso, R. Saykally, “Controlled growth of ZnO nanowires and their optical properties”, Adv. Funct. Mater., Vol.12, Issue. 5, pp. 323, 2002.
[24] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, “Ultraviolet- emitting ZnO nanowires synthesized by a physical deposition approach”, Appl. Phys. Lett., Vol.78, pp. 407, 2001.
[25] Y. Dai, Y. Zhang, Q. K. Li, C. W. Nan, “Synthesis and optical properties of tetrapod-like zinc oxide nanorods”, Chem. Phys. Lett., Vol.83, pp.358, 2002.
[26] C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, “Electron injection and recombination in Ru(dcbpy)2(NCS)2 Sensitized Nanostructured ZnO”, J. Phys. Chem. B., Vol.105 (24), pp. 5585-5588, 2001.
[27] J. Zhou, N. S. Xu, Z. L. Wang, “Dissolving behavior and stability of ZnO wires in biofluids:A study on biodegradability and biocompatibility of ZnO nanostructures”, Adv. Mater., Vol.18, Issue. 18, pp. 2432, 2006.
[28] C. L. Zhu, Y. J. Chen, R. X. Wang, L. J. Wang, M.S. Cao, X. L. Shi, “Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods”, Sensors and Actuators B, Vol.140, Issue. 1, pp. 185, 2009.
[29] N. K. Pandey, K. Tiwari, A. Roy, “Cu2O doped ZnO as mosture sensor”, Christ Church New Zealand, pp. 5387, 2009.
[30] X. Zhou, J. Zhang, T. Jiang, X. Wang, Z. Zhu, “Humidity detection by nanostructured ZnO: a wireless quartz crystal microbalance investigation”, Sens. Actuators A, Vol.135, Issue.1, pp. 209–214, 2007.
[31] Y. Qiu, S. Yand, “ZnO nanotetrapods: controlled vapour-phase synthesis and application for humidity sensing”, Adv. Funct. Mater., Vol.17, Issue. 8, pp. 1345–1352, 2007.
[32] S. Dixit, A. Srivastava, R. K. Shukla, “ZnO thick film based opto-electronic humidity sensor for wide range of humidity”, Opt. Rev.,Vol.14, Issue. 4, pp. 186–188, 2007.
[33] J. Xu, Y. Chen, D. Chen, J. Shen, “Hydrothermal synthesis and gas sensing characters of ZnO nanorods”, Sens. Actuators B, Vol.113, Issue. 1, pp. 526–531, 2006.
[34] C. S. Rout, S. H. Krishna, S. R. C. Vivekchand, A. Govindaraj, C. N. R. Rao, “Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes”, Chem. Phys. Lett., Vol. 418, Issue. 4-6, pp. 586–590, 2006.
[35] S. Roy, S. Basu, “Improved zinc oxide film for gas sensor application”, Bull. Mater. Sci., Vol.25, Issue. 6, pp. 513–515, 2002.
[36] F. Xu, K. Yu, G. Li, Q. Li, Z. Zhu, “Synthesis and field emission of four kinds of ZnO nano structure: nanosleeve-fishes, radial nanowire arrays, nanocombs and nanoflowers”, Nanotechnology, Vol.17, No.12, pp. 2855–2859, 2006.
[37] C. Xu, M. Kim, J. Chun, D. E. Kim, “The selectively manipulated growth of crystalline ZnO nanostructures”, Nanotechnology, Vol.16, No.10, pp. 2104–2110, 2005.
[38] V. Jeseentharani, B. Jeyaraj, J. Pragasam, A. DaySnan, K. S. Nagaraja, "Humidity sensing properties of CuO, ZnO and NiO composites”, Sens. Transducers J., Vol.113, Issue. 2, pp. 48, 2010.
[39] T. R. N. Kutty, N. Raghu, “Electrical conductivity of Cu-doped ZnO and its change with hydrogen implantation”, Appli.Phys. Lett., Vol.54, No.18, pp. 1796, 1989.
[40] S. P. Yawale, S. S. Yawale, G. T. Lamdhade, “Tin oxide and zinc oxide based doped humidity sensors”, Sens. Actuators A, Vol.135, Issue. 2, pp. 388, 2007.
[41] Y. Li, M.J. Yang, Y. She, “Humidity sensors using in-situ synthesized sodium polystrenesulfonate/ZnO nanocomposites”, Talanta, Vol.62, Issue. 4, pp. 707, 2004.
[42] M. Matsuguchi, Y. Sadaoka, Y. Sakai, T. Kuroiwa, A. Ito, “A capacitive-type humidity sensor using cross-linked poly (methyl-methacrylate) thin films”, J. Electrochem. Soc., Vol.138, Issue. 6, pp. 1862-1865, 1991.
[43] Y. Y. Qui, C. Azeredo-Leme, L. R. Alcacer, J. E. Franca, “A cmos humidity sensor with on-chip calibration”, Sens. Actuators A, Phys., Vol.92, Issue. 1–3, pp. 80, 2001.
[44] M. Dokmeci, K. Najafi, “A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages”, J. Microelectromech. Syst., Vol.10, Issue. 2, pp. 197, 2001.
[45] M. Matsuguchi, Y. Sadaoka, Y. Sakai, T. Kuroiwa, A. Ito, “A capacitive-type humidity sensor using cross-linked poly (methyl-methacrylate) thin films”, J. Electrochem. Soc., Vol.138, Issue. 6, pp. 1862-1865, 1991.
[46] P. Pascariu, A. Airinei, N. Olaru, I. Petrila, V. Nica, L. Sacarescu, F. Tudorache, “Microstructure, electrical and humidity sensor properties of electrospun, NiO–SnO2 nanofibers”, Sens. Actuators B, Vol.222, pp. 1024-1031, 2016.
[47] M. Zhuo, Y. Chen, J. Suna, H. Zhang, D. Guo, H. Zhang, “Humidity sensing properties of a single Sb doped SnO2 nanowire field effect transistor”, Sens. Actuators B, Vol.186, pp.78-83, 2013.
[48] Y. Zhou, J.D. Grunwaldt, F. Krumeich, K. B. Zheng, G. R. Chen, J. Stotzel, “Hydrothermal synthesis of Bi6S2O15 nanowires: structural, in situ EXAFS, and humidity-sensing studies”, Small., Vol.6, Issue. 11, pp. 1173-1179, 2010.
[49] D. Toloman, A. Popa, M. Stan, C. Socaci, A. Biris, G. Katona, “Reduced graphene oxide decorated with Fe doped SnO2 nanoparticles for humidity sensor”, Appl. Surf. Sci., Vol.402, pp. 410-417, 2017.
[50] M. Parthibavarman, V. Hariharan, C. Sekar, “High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method”, Mater. Sci. Eng., Vol.31, Issue. 5, pp. 840-844, 2011.
[51] D. Zhang, X. Zong, P. Li, Z. Wu, Y. Zhang, “Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled Tin disulfide/Titanium dioxide nanohybrid film”, Sens& Act. B Chemical, Vol.226, pp. 52-62, 2018.
[52] N. K. Pandey, K. Tiwari, A. Roy, “Ag doped nanomaterials as relative humidity sensor”, IEEE Sensors Journal, Vol.11, No.11, pp. 2911-2918, 2011.
[53] N. K. Pandey, K. Tiwari, A. Roy, “Moisture sensing application of Cu2O doped ZnO nanocomposites”, IEEE Sensors Journal, Vol.11, No.9, pp. 2142-2148, 2011.
[54] N. K. Pandey, A. Roy, A. Kumar, “Characterization of WO3-SnO2 nanocomposites and application in humidity sensing”, Sensors & Transducers , Vol.125, No.2, pp. 89, 2011.
[55] J. J. Wu, S. C. Liu, “ Low‐temperature growth of w ell‐aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater., Vol.14, Issue. 3, pp. 215, 2002
[56] R. K. Sharma, S. Patel, K. C. Pargaien, “Synthesis, characterization and properties of Mn-doped ZnO nanocrystals”, Adv. Nat. Sci., Nanosci. Nanotechnol., Vol.3, pp. 1-5, 2012.
[57] K. S. Chou, T. K. Lee, F. J. Liu, “Sensing mechanism of porous ceramic as humidity sensor”, Sensors Actuators B, Vol.56, Issue. 1-2, pp. 106-111, 1999.
[58] J. Zhao, A. Bulduml, J. Han, J. P. Lu, “Fast humidity sensors based on CeO2 nanowires”, Nanotechnology, pp. 13195, 2002.
[59] Z. Chen, C. Lu, “Humidity sensor: a review of material and mechanisms”, Sensor Lett., Vol. 3, No.4, pp. 274-295, 2005.
[60] J. H. Anderson, G. A. Parks, “Theoretical relations among rate constants, barriers and broensted slopes of chemical reactions”, J. Phys. Chem., Vol.72, No.3, pp. 891–899, 1968.
[61] W. M. Sears, “Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensor and multicolor cellular imaging”, Sensors Actuators B, Vol.281, pp. 34-43, 2018.
[62] X. Q. Fu, C. Wang, H. C. Yu, Y. G. Wang, T. H. Wang, “Synthesis and gas sensing properties of α-Fe2O3@ZnO core–shell nanospindles”, Nanotechnology, Vol.22, No.18, pp. 185501, 2011.
[63] C.H. Hu, C.H. Xia, F. Wang, M. Zhou, P. F. Yin, X.Y. Han, “Synthesis of Mn doped CeO2 nanorods and their application as humidity sensor”, Bull. Mater. Sci., Vol.34, Issue. 5 pp.1033-1037, 2011.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation