Full Paper View Go Back

Applications of Metal Compound Nanomaterials in Quantum Dot Sensitized Solar Cells (QDSSC)

R. K. Das1

  1. Dept. of Physics, Charuchandra College, University of Calcutta, Kolkata, India.

Correspondence should be addressed to: rkdas_171171@rediffmail.com.


Section:Review Paper, Product Type: Isroset-Journal
Vol.5 , Issue.5 , pp.16-18, Oct-2017


CrossRef-DOI:   https://doi.org/10.26438/ijsrpas/v5i5.1618


Online published on Oct 30, 2017


Copyright © R. K. Das . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: R. K. Das, “Applications of Metal Compound Nanomaterials in Quantum Dot Sensitized Solar Cells (QDSSC),” International Journal of Scientific Research in Physics and Applied Sciences, Vol.5, Issue.5, pp.16-18, 2017.

MLA Style Citation: R. K. Das "Applications of Metal Compound Nanomaterials in Quantum Dot Sensitized Solar Cells (QDSSC)." International Journal of Scientific Research in Physics and Applied Sciences 5.5 (2017): 16-18.

APA Style Citation: R. K. Das, (2017). Applications of Metal Compound Nanomaterials in Quantum Dot Sensitized Solar Cells (QDSSC). International Journal of Scientific Research in Physics and Applied Sciences, 5(5), 16-18.

BibTex Style Citation:
@article{Das_2017,
author = {R. K. Das},
title = {Applications of Metal Compound Nanomaterials in Quantum Dot Sensitized Solar Cells (QDSSC)},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {10 2017},
volume = {5},
Issue = {5},
month = {10},
year = {2017},
issn = {2347-2693},
pages = {16-18},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=481},
doi = {https://doi.org/10.26438/ijcse/v5i5.1618}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i5.1618}
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=481
TI - Applications of Metal Compound Nanomaterials in Quantum Dot Sensitized Solar Cells (QDSSC)
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - R. K. Das
PY - 2017
DA - 2017/10/30
PB - IJCSE, Indore, INDIA
SP - 16-18
IS - 5
VL - 5
SN - 2347-2693
ER -

623 Views    212 Downloads    164 Downloads
  
  

Abstract :
Here we have discussed the role of compound of metals such as ZnO, TiO2, PbS nanomaterials in QDSSC. Quantum dots have many advantages such as they form bilayer structure on the top of metal oxide, besides this it provides good carrier pathways and large interface areas for collection of carriers. PbS is used as photovoltaic material in near IR region. PbS quantum dots have also number of applications such as in nanotechnology, light emitting diodes and solar cells. In Quantum dots due to high level control over the size of crystals it is possible to have control over the band gap and conductive properties of the materials. This property makes quantum dots suitable for solar cells. Semiconductor quantum dots such as CdSe, InP, InAs, PbS, PbSe are used in solar cells. Cobalt nanoparticles are used in solar energy absorption and magnetic recording data purposes. QDSSC are less expansive and highly efficient in comparison to traditional solar cells.

Key-Words / Index Term :
Metal Oxide, Quantum Dots, Solar cell, Nanomaterials, Band gap

References :
[1] J. A. Tang, E. H. Sargent, “Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress”, Advanced Materials, vol.23, pp.12-29, 2011.
[2] I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films”, Journal of American Chemical Society, vol 128, pp.2385-2393, 2006.
[3] J. M. Luther, M. Law, M. C. Beard, Q Song, M.O. Reese, R. J. Ellingson, A. J. Nozik, “Schottky Solar Cells Based on Colloidal Nanocrystal Films” , Nano Letters, vol.8, pp. 3488-3492, 2008.
[4] J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. F. Sung, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruna, “PbSe Nanocrystal Excitonic Solar Cells”, Nano Letters, vol.9, pp.3749-3755, 2009.
[5] E. H. Sargent, “Colloidal Quantum Dot Solar Cells”, Nature Photonics, vol 6, pp.133-135, 2012.
[6] P. V. Kamat, “Quantum Dot Solar Cells, The Next Big Thing in Photovoltaics” , Journal of Physical Chemistry Letters, vol.4, pp.908-918, 2013.
[7] K. S. Leschkies, T. J. Beatty, M. S. Kang, D. J. Norris, E. S. Aydil, “Solar Cells Based on Junctions between Colloidal PbSe Nanocrystals and Thin ZnO Films”, ACS Nano, vol.3, pp.3638-3648, 2009.
[8] H. Liu, J. Tang, I. J. Kramer, R. Debnath, G. I. Koleilat, X. H. Wang, A. Fisher, R. Li, L. Brzozowski, L. Levina, “Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells”, Advanced Materials , vol. 23, pp.3832-3837, 2011.
[9] A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. H. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, “Depleted-Heterojunction Colloidal Quantum Dot Solar Cells”, ACS Nano, vol.4, pp.3374-3380, 2010.
[10] X. Z. Lan, J. Bai, S. Masala, S. M. Thon, Y. Ren, I. J. Kramer, S. Hoogland, A. Simchi, G. I. Koleilat, D. Paz-Soldan, “Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Hetero junction Solar Cells”, Advanced Materials, vol.25, pp.1769-1773, 2013.
[11] K.S. Leschkies, A. G. Jacobs, D. J. Norris, E. S. Aydil, ”Nanowire-Quantum-Dot Solar Cells and the Influence of Nanowire Length on the Charge Collection Efficiency”, Applied Physics Letters, vol.95, Issue 19, Article ID.193103, 2009.
[12] I. J. Kramer, D. Zhitomirsky, J. D. Bass, P. M. Rice, T. Topuria, L. Krupp, S. M. Thon, A. H. Ip, R. Debnath, H. C. Kim, ”Ordered Nanopillar Structured Electrodes for Depleted Bulk Hetero junction Colloidal Quantum Dot Solar Cells”, Advanced Materials, vol.24, pp.2315-2319, 2012.
[13] H. Park, S. Chang, J. Jean, J. J. Cheng, P. T. Araujo, M. S. Wang, M. G. Bawendi, M. S. Dresselhaus, V. Bulović, J. Kong, ”Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells.” Nano Letters, vol.13, pp.233-239, 2013.
[14] J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradecak, V. Bulovic, “ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells”, Advanced Materials, vol.25, pp.2790-2796, 2013.
[15] Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
[16] A. J. Nozik,“Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion,”, Inorganic Chemistry , vol.44 , pp.6893–6899, 2005.
[17] A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson,” Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells”, Chemical Reviews, vol.110, pp.6873–6890, 2010.
[18] A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots”, Chemical Physics Letters ,vol.457 , pp.3–11, 2008.
[19] A. H. Souici, N. Keghouche, J. A. Delaire, H. Remita, A. Etcheberry, M. Mostafavi, “Structural and Optical Properties of PbS Nanoparticles Synthesized by the Radiolytic Method”, Journal of Physical Chemistry C, vol.113, pp. 8050–8057, 2009.
[20] W.W. Scanlon, “Intrinsic Optical Absorption and the Radiative Recombination Lifetime in PbS”, Physical Review, vol.109, pp. 47–50, 1958.
[21] M. Mozafari, F. Moztarzadeh, “Green synthesis of well-defined spherical PbS quantum dots and its potential in biomedical imaging research and bio sensing”, IEEE ,vol.978, pp.100–103, 2011.
[22] Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, “PbS nanostructures synthesized via surfactant assisted mechanochemical route”, Crystal Research and Technology, vol. 39, pp.200–206, 2004.
[23] P. Gadenne, Y. Yagil, G. Deutscher,“Transmittance and reflectance in situ measurements of semicontinuous gold films during deposition”, Journal of Applied Physics, vol. 66, pp.3019–3025, 1989.
[24] R. S. Kane, R. E. Cohen, R. Silbey, “Theoretical Study of the Electronic Structure of PbS Nanoclusters”, Journal of Physical Chemistry, vol.100, pp.7928–7932, 1996.
[25] J. J. Peterson, T. D. Krauss, “Fluorescence Spectroscopy of Single Lead Sulfide Quantum Dots”, Nano Letters, vol.6, pp.510–514, 2006.
[26] N. Zhao, T. P. Osedach, L.Y. Chang, S.M. Geyer, D. Wanger, T. Maddalena, A.C. Arango, M.G. Bawendi, V. Bulovic, “Colloidal PbS Quantum Dot Solar Cells with High Fill Factor”, ACS Nano, vol.4, pp. 3743–3752, 2010.
[27] G. Chandraprabha, T. Sankarappa, T.Sujatha, “Structure and magnetic studies of Cobalt Nanoparticles prepared by Modified Polyol Process”, International Journal of Scientific Research in Physics and Applied Sciences, vol.5, Issue 4, pp. 17-20, 2017,
[28] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Investigation of Properties of ZnO Nanorad Structures by Chemical Vapor Deposition,” Science, vol.295, pp.2425-2427, 2002.
[29] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells” ,Advanced Functional Materials, vol.11, pp.15-26, 2001.
[30] M. H. Huang, Y. Wu, H. Feick, N. Tran, E.Weber, P.Yang, “Catalytic growth of zinc oxide nanowires by vapour transport”, Advanced Materials, vol.13, pp.113-116, 2001.
[31] Y.C. Kong, D.P. Yu, B. Zhang,W. Fang, S.Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach”, Applied Physics Letters, vol.78, pp.407-409, 2001.
[32] B. Pradhan, A. Bandyopadhyay, A. J Pal, “Tuning performance of donor-acceptor based self-assembled photovoltaic devices”, Applied Physics Letters,vol.85, pp.633, 2004.
[33] J.-J. Wu, S.-C. Liu, “Low-Temperature and Catalyst-Free Synthesis of Well-Aligned ZnO Nanorods on Si (100)”, Advanced Materials, vol.14, pp.215-218, 2002.
[34] J.-J. Wu, S.-C. Liu, “Catalyst-Free Growth and Characterization of ZnO Nanorods”,Journal of Physical Chemistry B, vol.106, pp.9546-9551, 2002.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation