Volume-6 , Issue-4 , Aug 2019, ISSN 2347-7520 (Online) Go Back
-
Open Access Article
Essential Oils from Plants: A Review on Eco-Friendly Mosquito Repellents
Pathalam Ganesan, Samuel Rajan, Daniel Magesh, Tharsiusraja Williamraja, Michael Gabriel Paulraj, Savarimuthu Ignacimuthu
Review Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.68-88, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.6888
Abstract
Essential oils from medicinal plants are widely used all over the world as insect repellents as they are highly safe and beneficial to environment with least ill-effects on animal and public health. Electronic databases including Science direct, PubMed, Scopus, Cochrane library and Scifinder were searched for papers on essential oils from plants with mosquito repellent efficacy. Ethnobotany, phytochemistry and repellent efficacy of plant essential oils were also discussed in this review. This review discusses in detail the mosquito-repellent plant essential oils which would be helpful in effective formulation of different essential oils for efficient control of mosquitoes, thus vector-borne diseases and for pharmacological studies, i.e., drug designing. This review would assist in finding studies on different mosquito-repellent plant essential oils at one stop, since it summarizes a large number of reports on essential oils.Key-Words / Index Term
Essential oil, mosquito repellent, Aedes, Culex, Anopheles, vector controlReferences
[1]. WHO. Report of the WHO informal consultation on the evaluation and testing of insecticides, CTD/WHOPES/IC/96.1.Control of Tropical Diseases, World Health Organization, Geneva, 1996
[2]. M.S. Fradin, J.F. Day. Comparative efficacy of insect repellents against mosquitoes bites. N. Engl. J. Med. 347, 13–18, 2002
[3]. E. Wegner. “A study of mosquito fauna (Diptera: Culicidae) and the phenology of the species recorded in Wilanow (Warsaw, Poland),” Europ. Mosquito Bullet. 27: 23–32, 2009
[4]. M. G Paulraj, A. D. Reegan, S. Ignacimuthu. “Toxicity of benzaldehyde and propionic acid against immature and adult stages of Aedes aegypti (Linn.) and Culex quinquefasciatus (Say) (Diptera: Culicidae). J Entomol. 8 (6): 539–547, 2011
[5]. K. Karunamoorthy, K. Ilango, K. Murugan. Laboratory evaluation of traditionally used plant-based insect repellents against the malaria vector Anopheles arabiensis Patton. Parasitol, Res. 106:1217–1223, 2010
[6]. Z. Peng, J.Yang, H. Wang, F.E. Simons. Production and characterization of monoclonal antibodies to two new mosquitoes Aedes aegypti salivary proteins. Insect. Biochem. MolBiol. 29: 909–914, 1999
[7]. A.A. Rahuman, A. Bagavan, C. Kamaraj, E. Saravanan, A.A Zahir, G. Elango. Efficacy of the larvicidal botanical extracts against Culex quinquefasciatus Say (Dipetera: Culicidae). Parasitol. Res. 104: 1365–1372, 2009
[8]. R. Borah, M.C. Kalita, A. Kar, A.K. Talukdar. Larvicidal efficacy of Toddalia asiatica (Linn.) Lam against two mosquito vector Aedes aegypti and Culex quinquefasciatus. Afr. J. Biotechnol. 9: 2527–2530, 2010
[9]. S. Hales, N.D. Wet, J. Maindonald, A. Woodward. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 360: 830–834, 2002
[10]. D.S. Akram, S. Ahmed. Dengue fever. Infect. Dis. J. 14:124–125, 2005.
[11]. W. Taubitz, J.P. Cramer. A. Kapaun, M. Pfeffer, C. Drosten, G. Dobler, G.D. Burchard, T. Löscher. Chikungunya fever in travelers: clinical presentation and course. Clin. Infect. Dis. 45: 508, 2007
[12]. P. Holder. The mosquitoes of New Zealand and their animal disease significance. Surveillance. 26: 12–15, 1999
[13]. WHO. The Global Programme to Eliminate Lymphatic Filariasis (GPELF). http://www.who.int/lymphatic_filariasis/disease/en/.Accessed Mar 2008
[14]. NICD. Proceeding of the National Seminar on operation research on vector control in filariasis. New Delhi, 1990
[15]. N.B.S Sarkari, S.P. Barthwal, A.K Gupta, M.M.S. Bagga, S.N. Mishra, V.K. Mishra. A clinical appraisal of two epidemics of Japanese encephalitis in eastern Utter Pradesh. In: Proceedings of National conference on Japanese encephalitis. pp 34–40, 1984
[16]. V. Ravi, S. Vanajakshi, A. Gowda, A. Chandramuki. A laboratory diagnosis of Japanese encephalitis using monoclonal antibodies and correlation of findings with the outcome. J. Med. Virol. 29: 221–223, 1989
[17]. A.V. Kondrachine. Malaria in WHO Southeast Asia region. Indian. J. Mal. Res. 29: 129–160, 1992
[18]. G. Wernsdorfer, W.H. Wernsdorfer. Malaria at the turn from the 2nd to the 3rd millenium. Wien. Klin. Wochenschr. 115 (3): 2–9, 2003
[19]. S.J. Rahman, S.K. Sharma, Rajagopal. Manual on entomological surveillance of vector borne diseases. NICD, New Delhi, 1989
[20]. V.P. Sharma, V. Dev. Prospects of malaria control in northeastern India with particular reference to Assam. In: Proceedings of National Symposium on Tribal Health, Regional Medical Research Centre for Tribals, Jabalpur. 19–20 October, pp 21–30, 2006
[21]. B.L. Wattal, G.C. Joshi, M. Das. Role of agricultural insecticides in precipitating vector resistance. J. Comm. Dis. 13: 71–73, 1981
[22]. M.A. Ansari, P.K. Mittal, R.K. Razdan, R.C. Dhiman, A. Kumar. Evaluation of pirimiphos-methyl (50% EC) against the immature of Anopheles stephensi/An. culicifacies (malaria vectors) and Culex quinquefasciatus (vector of bancroftian filariasis). J. Vector. Borne. Dis. 41: 10–16, 2004
[23]. K.C. Mulyatno, A. Yamanaka, K.E. Ngadino. Resistance of Aedes aegypti (L.) larvae to temephos in Surabaya, Indonesia. Southeast Asian. J. Top. Med. Public. Health. 43: 29–33, 2012
[24]. N. Grisales, R. Poupardin, S. Gomez, I. Fonseca-Gonzalez, H. Ranson, A. Lenhart. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLOS. Negl. Trop. Dis. 7: 1–10, 2013
[25]. C.D. Chen, W.A. Nazni, H.L. Lee, Y. Norma-Rashid, M.L. Lardizabal, M. Sofian-Azirun. Temephos resistance in field Aedes (Stegomyia) albopictus (Skuse) from Selangor, Malaysia. Trop. Biomed. 30: 220–230, 2013
[26]. N. Sutthanont, W. Choochote, B. Tuetun, A. Junkum, A. Jitpakdi, U. Chaithong, D. Riyong, B. Pitasawat. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and -resistant strains of Aedes aegypti (Diptera: Culicidae). J. Vector Ecol. 35: 106–115, 2010
[27]. S.K. Madhu, A.K. Shaukath, V.A. Vijayan. Efficacy of bioactive compounds from Curcuma aromatica against mosquito larvae. Acta Trop. 113: 7–11, 2010.
[28]. S. Bayen. Occurrence, bioavailability and toxic effects of trace metals andorganic contaminants in mangrove ecosystems: a review. Environ. Int. 48: 84–101, 2012
[29]. B.P. Chapagain, V. Saharan, Z. Wiesman. Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. Bioresour. Technol. 99: 1165–1168, 2008
[30]. H. Perumalsamy, N.J. Kim, Y.J. Ahn. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). J. Med. Entomol. 46: 1420–1423, 2009
[31]. Y. Han, L. Li, W. Hao, M. Tang, S. Wan. Larvicidal activity of lansiumamide B from the seeds of Clausena lansium against Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 112: 511–516, 2013
[32]. O.S. da Silva, F.C. da Silva, F.M.C. de Barros, J.L.R.. da Silva, S.A. de Loreto Bordignond, V.L. Eifler-Lima, G.L. von Poserb, J.S. Prophiro. Larvicidal and growth-inhibiting activities of extract and benzopyrans from Hypericum polyanthemum (Guttiferae) against Aedes aegypti (Diptera: Culicidae). Ind. Crops. Prod. 45: 236–239, 2013
[33]. Y. Akhtar, Y.R. Yeoung, M.B. Isman. Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaletia unipuncta. Phytochem. Rev. 7: 77–88, 2008
[34]. A. Blackwell, A.E. Stuart, B.A. Estambale. The repellent and antifeedant activity of Myrica Gale oil against Aedes aegypti mosquitoes and its enhancement by the addition of salicyluric acid. J. R. Coll. Physicians. Edinb. 33: 209, 2003
[35]. M.S. Fradin. Mosquitoes and mosquito repellents: a clinician`s guide. Ann. Inter. Med. 12 (11): 931-940, 1998
[36]. H.H. Yap, K. Jahangir, J. Zairi. Field efficacy of four insect repellent products against vector mosquitoes in a tropical environment. J. Am. Mosq. Control. Assoc. 16: 241–244, 2000
[37]. WHO. Informal consultation on malaria elimination: setting up the WHO agenda. In: Delacollette C, Rietveld A (eds). WHO/ HTM/MAL/2006.1114, 2006
[38]. R.K. Gupta, L.C. Rutledge. Role of repellents in vector control and disease prevention. Am. J. Trop. Med. Hyg. 50: 82–86, 1994
[39]. D.C. Chavasse, H.H. Yap. Chemical methods for the control of vectors and pests of public health importance. Geneva, Switzerland, WHO/CTD/WHOPES/97.2.129, 1997
[40]. M. Brown, A.A. Hebert. Insect repellents: an overview. J. Am. Acad. Dermatol. 36: 243-249, 1997
[41]. RED. Registration Eligibility Decision. EPA 738-R-98-010. United States Environmental Protection Agency. http://www.epa.gov/oppsrrd1/REDs/0002red.pdf, 1998
[42]. C.F. Golenda, V.B. Solberg, R. Burge, J.M. Gambel, R.A. Wirtz. Gender-related efficacy difference to an extended duration formulation of topical N,N-diethyl-m-toluamide (DEET). Am. J. Trop. Med. Hyg. 60: 654–657, 1999
[43]. J. Govere, D.N. Durrheim, L. Baker, R. Hunt, M. Coetzee. Efficacyof three insect repellents against the malaria vector Anopheles arabiensis. Med. Vet. Entomol. 14: 441–444, 2000
[44]. J.R. Roberts, J.R. Reigart. Does anything beat DEET? Pediatr. Ann. 33: 443-453, 2004
[45]. G. Briassoulis. Toxic encephalopathy associated with use of DEET insect repellents: a case analysis of its toxicity in children. Hum. Exp. Toxicol. 20: 8–14, 2001
[46]. J.R. Clem, D.E. Havemann, M.A. Raebel. Insect repellent (N,N-diethyl-m-toluamide) cardiovascular toxicity in an adult. Ann. Pharmacother. 27: 289-293, 1993
[47]. H. Qiu, H.W. Jun, J.W. McCall. Pharmacokinetics, formulation, and safety of insect repellent N,Ndietyl- 3-methylbenzamide (deet): a review. J. Am. Mosq. Control. Assoc. 14: 12-27, 1998
[48]. D.R. Barnard, R. Xue. Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseratus (Diptera: Culicidae). J. Med. Entomol. 41: 726–730, 2004
[49]. J. L. Johnson, W. A. Skinner, H.I. Maibach, T. R. Pearson. Repellent activity and physical properties of ring-substituted N,N-diethyl benzamides. Econ. Entomol. 60: 173-176, 1967
[50]. N.R., Farnsworth, A.S. Bingel. Natural products and plant drugs with pharmacological, biological or therapeutic activity, Springer- Verlag. Berlin, 1977
[51]. R.P. Mody, F.M. Benoit, R. Riedel, L. Ritter. Dermal absorption of the insect repellent deet (N,N-diethyl-ntoluamide) in rats and monkeys; effect of anatomical site and multiple exposure. J. Toxicol. Environ. Health. 26: 137-147, 1989
[52]. M. Aquino, M. Fyfe, L. MacDougall, V. Remple. West Nile virus in British Columbia. Emerg. Infect. Dis. 10: 1499–1501, 2004
[53]. S. Weigel, J. Kuhlmann, H. Huhnerfuss. Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clopbric acid, caffeine and DEET in the North Sea. Sci. Total. Environ. 295: 131-141, 2002
[54]. S. Senthil Nathan, P.G. Chung, K. Murugan. Effect of botanicals and bacterial toxin on the gut enzyme of Cnaphalocrocis medinalis. Phytoparasit. 32: 433-443, 2004
[55]. M.B. Isman. Pesticides based on plant essential oils. Pestic. Outlook. 10: 68–72, 1999
[56]. L. Hadfield-Law. Head lice for A & E nurses. Accid. Emerg. Nurs. 8: 84–87, 2000
[57]. K.Y. Mumcuoglu, J. Miller, Zamir, C., Zentner, G., Helbin, V., Ingber, A. The in vivo pediculicidal efficacy of a natural remedy. Isr. Med. Assoc. J. 4: 790–793, 2002
[58]. M.B. Isman. Botanical insecticides, deterrents, and repellents in modern agriculture and increasingly regulated world. Annu. Rev. Entomol. 51: 45–66, 2006
[59]. T.G.T. Jaenson, K. Palsson, K. Aakb. Evaluation of Extracts and Oils of Mosquito (Diptera: Culicidae) Repellent Plants from Sweden and Guinea-Bissau. Entomol. Soc. Am. 0022-2585/06/0113Ð0119$04.00/0, 2006
[60]. K. Sukumar, M.J. Perich, L.R. Boobar. Botanical derivatives in mosquito control: a review. J. Am. Mosq. Contr. Assoc. 7: 210–237, 1991
[61]. P. Vasudevan, M. Tandon, N. Pathak, P. Nuennerich, F. Muller, A. Mele, H. Lentz. Fluid CO2 extraction and hydrodistillation of certain biocidal essential oils and their constituents. J. Sci. Ind. Res. 56: 662-672, 1997
[62]. W. Choochote, U. Chaithong, K. Kamsuk, A. Jitpakdi, P. Tippawangkosol, B. Tuetun, D. Champakaew, B. Pitasawat. Repellent activity of selected essential oils against Aedes aegypti. Fitoterap. 78: 359–364, 2007
[63]. Y.G. Gillij, R.M. Gleiser, J.A. Zygadlo. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour. Technol. 99: 2507–2515, 2008
[64]. J.O. Odalo, M.O. Omoloa, H. Malebo, J. Angira, P.M. Njeru, I.O. Ndiege, A. Hassanali. Repellency of essential oils of some plants from the Kenyan coast against Anopheles gambiae. Acta. Trop. 95: 210–218, 2005
[65]. A. Giatropoulos, D. Pitarokili, F. Papaioannou, D.P. Papachristos, G. Koliopoulos, N. Emmanouel, O. Tzakou, A. Michaelakis. Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 112: 1113–1123, 2013
[66]. R.M. Gleiser, M.A. Bonino, J.A. Zygadlo. Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti. Parasitol. Res. 108: 69–78, 2011
[67]. B. Conti, G. Benelli, G. Flamini, P.L. Cioni, R. Profeti, L. Ceccarini, M. Macchia, A Canale. Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol. Res. 110: 2013–2021, 2012
[68]. K. Kamsuk, W. Choochote, U. Chaithong, A. Jitpakdi, P. Tippawangkosol, D. Riyong, B. Pitasawat. Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field applications. Parasitol. Res. 100: 339–345, 2007
[69]. WHO. Report of the WHO informal Consultation on the evaluation and testing of insecticides. CTD/WHO PES/IC/96.1. WHO, Geneva. p 69, 1996
[70]. F.J. Gerber, D.R. Barnard, R.A. Ward. Manual for mosquito rearing and experimental techniques. Am. Mosq. Control. Assoc. Bull. 5: 1–98, 1994
[71]. R.E. Coleman, L.L. Robert, L.W. Roberts, J.A. Glass, D.C. Seeley, A. Laughinghouse, P., Perkins, R.A. Wirtz. Laboratory evaluation of repellents against four anopheline mosquitoes (Diptera: Culicidae) and two phlebotomine sand flies (Diptera: Psychodidae). J. Med. Entomol. 30: 499–502, 1993
[72]. J.M. Govere, D.V. Durrheim. Techniques for evaluating repellents. In: Debboun M, Frances SP, Strickman D (eds) Insect repellents: Principles methods, and use. CRC Press, Boca Raton 2006
[73]. Α. Giatropoulos, N. Emmanouel, G. Koliopoulos, A. Michaelakis. A study on distribution and seasonal abundance of Aedes albopictus (Diptera: Culicidae) population in Athens, Greece. J. Med. Entomol. 49: 262–269, 2012
[74]. A., Tawatsin, S.D. Wratten, R.R. Scott, U. Thavara, Y. Techadamrongsin. Repellency of Volatile Oils from Plants against Three Mosquito Vectors. Vector Ecol. 26 (1): 76-82, 2001
[75]. M. Debboun, D. Strickman, T.A. Klein, J.A. Glass, E. Wylie, A. Laughinghouse, R.A. Wirtz, R.K. Gupta. Laboratory evaluation of AI3-37220, AI3-35765, CIC-4, and DEET repellents against three species of mosquitoes. J. Am. Mosq. Control. Assoc. 15: 342–347, 1999
[76]. S.P. Frances, N. Eikarat, B. Sripongsai, C. Eamsila. Response of Anopheles dirus and Aedes albopictus to repellents in the laboratory. J. Am. Mosq. Control. Assoc. 9: 474-476, 1993
[77]. S.P. Frances, R.D. Cooper, A.W. Sweeney. Laboratory and field evaluation of the repellents Deet, CIC-4, and AI3-37220 against Anopheles farauti (Diptera: Culicidae) in Australia. J. Med. Entomol. 35: 690–693, 1998
[78]. C.F. Curtis, N. Hill. Comparison of methods of repelling mosquitoes. Entomol. Exp. Appl. 49: 175–179, 1998
[79]. C.E. Schreck, T.P. Mc Govern. Repellents and other personal protection strategies against Aedes albopictus. J. Am. Mosq. Control. Assoc. 5: 247–252, 1989
[80]. K. Kamsuk, W. Choochote, U. Chaithong, A. Jitpakdi, P. Tippawangkosol, D. Riyong, B. Pitasawat. Effectivenes of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field application. Parasitol. Res. 100: 339–345, 2006
[81]. M.A. Ansari, R.K. Razdan. Relative efficacy of various oils in repelling mosquitoes. Indian. J. Malariol. 32: 104–111, 1995
[82]. S.P. Frances, R.D. Cooper, S. Popa, N.W. Beebe. Field evaluation of repellents containing deet and AI3-37220 against Anopheles koliensis in Papua New Guinea. J. Am. Mosq. Contr. Assoc. 17: 42-44, 2001.
[83]. K. Tanaka, K. Mizusawa, E. Saugstad. Mosquitoes of Japan and Korea. Contrib. Am. Entomol. Inst. 16: 987, 1979
[84]. R. Rattanarithikul, P. Panthusiri. An illustrated key to the medically important mosquitoes of Thailand. US Army Medica; Companent, Southeast Asia Treaty Organization, Bangkok 1994
[85]. A. Tawatsin, D. Steve, R. Wratten, R. Scott, U. Thavara, Y. Techadamrongsin. Repellency of Volatile Oils from Plants against Three Mosquito Vectors. J. Vector. Ecol. 26 (1): 76-82, 2001
[86]. A. Amer, H. Mehlhorn. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol. Res. 99: 466–472, 2006
[87]. R.M. Gleiser, J.A. Zygadlo. Essential oils as potential bioactive compounds against mosquitoes. In: Imperato F (ed) Recent advances in phytochemistry. Research Signpost, Kerala 53–76, 2009
[88]. R. Maheswaran, and S. Ignacimuthu. A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol. res, 110 (5): 1801-1813, 2012
[89]. S.J. Moore, A. Lenglet, N. Hill. Field evaluation of three plant-based insect repellents against malaria vectors in Vaca Diez province, the Bolivian Amazon. J. Am. Mosq. Control. Assoc. 18: 107–110, 2002
[90]. M.O. Omolo, D. Okinyo, I.O. Ndiege, W. Lwande, A. Hassanali. Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochem. 65: 2797–2802, 2004
[91]. MB. Isman. Plant essential oils for pest and disease management. Crop Prot 19:603–608, 2000
[92]. D.P. Papachristos, D.C. Stamopoulos. Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J Stored Prod Res 38:117–128, 2002
[93]. D.P. Papachristos, K.I. Karamanoli, D.C. Stamopoulos, U. Menkissoglu- Spiroudi. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest. Manag. Sci. 60: 514–520, 2004
[94]. P. Kumar, S. Mishra, A. Malik, S. Satya. Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the housefly, Musca domestica. Med. Vet. Entomol. 25: 302–310, 2011
[95]. A. Michaelakis, D. Papachristos, A. Kimbaris, G. Koliopoulos, A. Giatropoulos, M.G. Polissiou, Citrus essential oils and four Enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol. Res. 105: 769–773, 2009
[96]. M.F. Maia, S.J. Moore. Plant-based insect repellents: a review of their efficacy, development and testing. Malar. J. 10: S11, 2011
[97]. D. Pitarokili, A. Michaelakis, G. Koliopoulos, A. Giatropoulos, O. Tzakou. Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol. Res. 109: 425–430, 2011
[98]. E. Evergetis, A. Michaelakis, and S.A. Haroutounian. Essential oils of Umbelliferae (Apiaceae) family taxa as emerging potent agents for mosquito control. In Inte. Pest Manage. Pest. Cont. Curr. Future Tact. In. Tech, 2012
[99]. C. Regnault-Roger, C. Vincent, J.T. Arnason. Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol. 57: 405–424, 2012
[100]. J.A. Zygadlo, H.R. Juliani Jr. Bioactivity of essential oil components. Current Topics in Phytochemistry. Res. Trends. Rev. 3: 203–214, 2000
[101]. M. Hori. Repellency of essential oils against the cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Appl. Entomol. Zool. 38: 467–473, 2003
[102]. D.R. Barnard. Repellency of essential oils to mosquitoes (Diptera: Culicidae). J. Med. Entomol. 36: 625–629, 1999
[103]. A.K. Prajapati V, K.K. Tripathi, S.P.S. Aggarwal, Khanuja. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedesaegypti and Culex quinquefasciatus. Bioresour. Technol. 96: 1749–1757, 2005
[104]. Y. Trongtokit, Y. Rongsriyam, N. Komalamisra, C. Apiwathnasorn. Comparative repellency of 38 essential oils against mosquito bites. Phytother. Res. 19: 303–309, 2005
[105]. A. Amer, H. Mehlhorn. Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol. Res. 99: 478–490, 2006b
[106]. H.S. Lee. Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens. J. Am. Mosq. Control. Assoc. 22: 292–295, 2006
[107]. J.F. Carroll, N. Tabanca, M. Kramer, N.M. Elejalde, D.E. Wedge, U.R. Bernier, M. Coy, J.J. Becnel, B. Demirci, K.H.C. Başer, J. Zhang, S. Zhang. Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J. Vector. Ecol. 36: 258–268, 2011
[108]. M.M. Sedaghat, A.S. Dehkordi, M. Khanavi, M.R. Abai, F. Mohtarami, H. Vatandoost. Chemical composition and larvicidal activity of essential oil of Cupressus arizonica E.L. Greene against malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Pharmacogn. Res. 3:135–139, 2011
[109]. F. Vourlioti-Arapi, A. Michaelakis, E. Evergetis, G. Koliopoulos, S.A. Haroutounian. Essential oils of indigenous in Greece six Juniperus taxa: chemical composition and larvicidal activity against the West Nile virus vector Culex pipiens. Parasitol. Res. 110: 1829–1839, 2012
[110]. S.B. Freeborn. Observations on the control of Sierran Aedes (Culicidae: Diptera). Pan-Pac. Entomol. 4: 177–181, 1928
[111]. C. Dover. An improved citronella mosquito deterrent. Indian. J. Med. Res. 17: 961, 1930
[112]. D. Barnard. Repellency of essential oils to mosquitoes (Diptera: Culicidae). J Med Entomol 36:625–629, 1999
[113]. A.R. Penfold, F.R. Morrison. Some Australian essential oils in insecticides and repellents. Soap, Perfum. Cosmet. 52: 933–934, 1952
[114]. M.A. Ansari, R.K. Razdan, M. Tandon, P. Vasudevan. Larvicidal and repellent actions of Dalbergia sissoo Roxb.(F. Leguminosae) oil against mosquitoes. Bioresour. Technol. 73: 207-211, 2000
[115]. B.M. Matsuda, G.A. Surgeoner, J.D. Heal, A.O. Tucker, M.J. Maciarello. Essential oil analysis and field evaluation of the citrosa plant “Pelargonium citrosum” as a repellent against populations of Aedes mosquitoes. J. Am. Mosq. Control. Assoc. 12: 69–74, 1996
[116]. A.A. Khan, Maibach, H.I., Skidmore, D.L. Mosq News. 35: 223, 1975
[117]. B. Tuetun, W. Choochote, D. Kanjanapothi, E. Rattanachanpichai, U. Chaithong, P. Chaiwong, A. Jitpakdi, P. Tippawangkosol, D. Riyong, B. Pitasawat. Repellent properties of celery, Apium graveolens L., compared with commercial repellents, against mosquitoes under laboratory and field conditions. Trop. Med. Internat. Health. 10 (11): 1190-1198, 2005
[118]. T.S.L. Ngamo, A. Goudoum, M.B. Ngassoum, P.M. Mapongmestsem, G. Lognay, F. Malaisse, T. Hance. Chronic toxicity of essential oil of 3 local aromatic plants towards Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). Afr. J. Agric. Res. 2: 164–167, 2007
[119]. A.A.S. Amusan, A.B. Idowu, F.S. Arowolo. Comparative toxicity effect of bush tea leaves (Hyptis suaveolens) and orange peel (Citrus sinensis) oil extract on larvae of the yellow fever mosquito Aedes aegypti. Tanz. Health. Res. Bull. 7: 174–178, 2005
[120]. T.G. Jaenson, K. Palsson, A.K. Borg-Karlson. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plant from Sweden and Guinea-Bissau. J. Med. Entomol. 43: 113–119, 2006
[121]. N. Peerzada. Chemical composition of the essential oil of Hyptis suaveolens. Molecules. 2: 165–168, 1997
[122]. J.O. Othira, L.A. Onek, L.A. Deng, E.O. Omolo. Insecticidal potency of H. spicigera preparations against Sitophilus zeamais (L.) and Tribolium castaneum (Herbst) on stored maize grains. Afr. J. Agric. Res. 4: 187–192, 2009
[123]. B. Conti A. Canale, PL. Cioni, G. Flamini, A. Rifici yptis suaveolens and Hyptis spicigera (Lamiaceae) essential oils: qualitative analysis, contact toxicity and repellent activity against Sitophilus granarius (L.) (Coleoptera: Dryophthoridae). J Pest Sci 84:219–228, 2011
[124]. A. Seyoum, E.W. Kabiru, W. Lwande, G.F. Killeen, A. Hassanali, B.G.J. Knols. Repellency of live potted plants against Anopheles gambiae from human baits in semi-field experimental huts. Am. Soc. Trop. Med. Hyg. 67: 191–195, 2002
[125]. K. Palsson, T.G.T. Jaenson. Plant products used as mosquito repellents in Guinea Bissau, West Africa. Act. Trop. 72: 39–52, 1999
[126]. K. Palsson, T.G.T. Jaenson. Comparison of plant products and pyretroid-treated bednets for protection against mosquitoes (Diptera: Culicidae) in Guinea-Bissau, West Africa. Med. Entomol. 36: 144–148, 1999
[127]. C.F. Curtis, J.D. Lines, J. Ijumba, A. Callaghan, N. Hill, M.A. Karimzad. The relative efficiency of repellents against mosquito vectors of disease. Med. Vet. Entomol. 1: 109–119, 1987
[128]. S.J. Moore, A.D. Lenglet, An overview of plants used as insect repellents. In: M. Willcox, G. Bodeker, P. Rasoanaivo. (Eds.), Traditional Medicinal Plants and Malaria. CRC Press, Boca Raton, pp. 343–363, 2004
[129]. J.K. Trigg, N. Hill. Laboratory evaluation of a Eucalyptus-based repellent against four biting arthropods. Phytother. Res. 10: 313–316, 1996
[130]. I. Jantan, Z.M. Zaki. Development of environment-friendly insect repellents from the leaf oils of selected Malaysian plants. ARBEC 1998.
[131]. A. Awatsin, P. Asavadachanukorn, U. Thavara, P. Wongsinkongman, J. Bansidhi, T. Boonruad, et al. Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian. J. Trop. Med. Public. Health. 37: 915-931, 2006
[132]. T. Pushpanathan, A. Jebanesan, M. Govindarajan. The essential oil of Zingiber officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res. 102: 1289–1291, 2008
[133]. U.R. Bernier, K.D. Furman, D.L. Kline, S.A. Allan, D.R Barnard. Comparison of contact and spatial repellency of catnip oil and N,N-diethyl-3- methylbenzamide (DEET) against mosquitoes. J. Med. Entomol. 42: 306–311, 2005
[134]. C.E. Webb, R.C. Russell. Is the extract from the plant catmint (Nepeta cataria) repellent to mosquitoes in Australia? J. Am. Mosq. Control. Assoc. 23: 351–354, 2007
[135]. D.A. Collins, J.N. Brady. Assessment of the efficacy of quwenling as a mosquito repellent. Phytother. Res. 7: 17–20, 1993
[136]. N.G. Das, I. Baruah, P.K. Talukdar, S.C. Das. Evaluation of botanicals as repellents against mosquitoes. J. Vector. Borne. Dis. 40: 49–53, 2003
[137]. O. Chokechaijaroenporn, N. Bunyapraphatsara, S. Kongchuensin. Mosquito repellent activities of ocimum volatile oils. Phytomed. 1: 135-139, 1994
[138]. L.C. Rutledge, D.M. Collister, V.E. Meixsell, G.H.C. Eisenberg. Comparative sensitivity of representative mosquitoes (Diptera: Culicidae) to repellents. J. Med. Entomol. 20: 506–510, 1983
[139]. Y.S. Hwang, H. Wu, K. J. Kumamoto, H. Axelrod, M.S. Mulla. Isolation and identification of mosquito repellents in Artemisia vulgaris. J. Chem. Ecol. 11: 1297–1306, 1985
[140]. V.K. Dua, N.C. Gupta, A.C. Pandey, V.P. Sharma. Repellency of Lantana camara (Verbenaceae) flowers against Aedes mosquitoes. J. Am. Mosquito Contr. Assoc. 12: 406–408, 1996
[141]. A. Seyoum, K. Pålsson, S. Kunga, E.W. Kabiru, W. Lwande, G.F. Killeen, A. Hassanali, Knots, B.G.J. Traditional use of mosquito repellent plants in western Kenya and their evaluation in semi field experimental huts against Anopheles gambiae: ethnobotanical studies and application by thermal expulsion and direct burning. Trans. R. Soc. Trop. Med. Hyg. 96: 225–231, 2002
[142]. H.D. Grayson. Monoterpenoids. Nat. Prod. Rep. 17: 385–419, 2000
[143]. B. Pitasawat, W. Choochote, B. Tuetun, P. Tippawangkosol, D. Kanjanapothi, A. Jitpakdi, D. Riyong. Repellency of aromatic turmeric Curcuma aromatica under laboratory and field conditions. J. Vect. Ecol. 28: 234–240, 2003
[144]. M. Perich, C.Wells, W. Bertsch, K.E. Tredway. Isolation of the insecticidal components of Tagetes minuta (Compositae) against mosquito larvae and adults. J. Am. Mosq. Cont. Assoc. 11: 307–310, 1995
[145]. M. Bhatnagar, K.K. Kapur, S. Alers, S.K. Sharma. Laboratory evaluation of insecticidal properties of Ocimum basilicum L. and O. sanctum L. plants essential oils and their major constituents against vector mosquito species. Ent. Res. 17: 21–26, 1993
[146]. A. Seyoum, G.F. Killeen, E.W. Kabiru, B.G.J. Knols, A. Hassanali. Field efficacy of thermally expelled or live potted repellent plants against African malaria vectors in western Kenya. Trop. Med. Int. Health. 8: 1005–1011, 2003
[147]. W.S. Choi, B.S. Park, S.K. Ku, S.E. Lee. Repellent activities of essential oils and monoterpenes against Culex pipiens fallens. J. Am. Mosq. Control. Assoc. 18: 348–351, 2002
[148]. J. Zhu, X. Zeng, L.T. Yanma, K. Qian, Y. Han, S. Xue, B. Tucker, G. Schultz, J. Coats, W. Rowley, A. Zhang,. Adult repellency and larvicidal activity of five plant essential oil against mosquitoes. J. Am. Mosq. Control. Assoc. 22: 512–522, 2006
[149]. B.K. Tyagi, T. Ramnath, A.K. Shahi. Evaluation of repellency effect of Tagetus minuta (Family: Compositae) against the vector mosquitoes Anopheles stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti L. Int. Pest. Contr. 39: 48, 1994
[150]. D.S. Hebbalkar, R.N. Sharma, V.S. Joshi, V.S. Bhat. Mosquito repellent activity of oils from Vitex negundo Linn. Leaves. Indian. J. Med. Res. 95: 200–203, 1992
[151]. Z. Li, J. Yang, X. Zhuang, Z. Zhang. Studies on the repellent quwenling. Malaria. Res. (In Chinese): 6, 1974
[152]. C.F. Curtis, J.D. Lines, L. Baolin, A. Renz. Natural and synthetic repellents. In Appropriate Technology in Vector Control, Curtis CF (ed.), ch.4.CRC Press: Florida, 1989
[153]. M.A. Ansari, R.K. Razdan. Repellent action of Cymbopogon martini martini Stapf var. Sofia against mosquitoes. Indian. J. Malariol. 31: 95–102, 1994
[154]. E.H. Chisowa, D.R. Hall, D.I. Farman. Chemical composition of the essential oil of Tagetes minuta from Zambia. J. Essent. Oil. Res. 10: 183–184, 1998
[155]. A.A. Craveiros, F.J.A. Matos, M.I.L.Machado, J.L. Alencar. Essential oils of Tagetes minuta from Brasil. Perf. Flav. 13: 35– 36, 1988
[156]. A. Gil, C.M. Ghersa, S. Leicach. Essential oils yield and composition of Tagetes minuta accessions from Argentina. Biochem. Syst. Ecol. 28: 261–274, 2000
[157] E. Hethelyi, B. Danos, P. Tetenyi, G. Juhasz. Phytochemical studies on Tagetes species; infra specific differences of the essential oil in T. minuta and T. tenuifolia. Herb. Hungarica. 26: 145–158, 1987
[158]. J. Ibrahim, Z.M. Zaki. Development of environment-friendly insect repellents from the leaf oils of selected Malaysian Plants. ASEA. Rev. Biodiv. Environ. Conserv. (ARBEC). 6: 1–7, 1998
[159]. B.P. Moore. Pheromones in the termite societies. In: Birch, M.C. (Ed.), Pheromones. American. Elsevier, New York, pp. 250–265, 1974
[160]. B.S. Park, W-S. Choi, J-H. Kim , K-H. Kim, S-E. Lee. Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents. J. Am. Mosq. Control. Assoc. 21: 80–83, 2005
[161]. Y.C. Yang, E.H. Lee, H.S. Lee, D.K. Lee, Y.J. Ahn. Repellency of aromatic medicinal plant extracts and a steam distillate to Aedes aegypti. J. Am. Mosq. Contr. Assoc. 20: 146–149, 2004
[162]. R. Tsao, S. Lee, P.J. Rice, C. Jensen, J.R. Coats. Monoterpenoids and their synthetic derivatives as leads for new insect control agents. In: D.R. Baker, J.G. Fenyes, G.S. (Eds.), Basarab. Synthesis and Chemistry of Agrochemicals IV. American Chemical Society, Washington, DC, pp. 312–324, 1995
[163]. R.P. Adams, T.A. Zanoni, A. Lara, A.F. Barrero, L.G. Cool. Comparisons among Cupressus arizonica Greene, C. benthamii Endl., C. lindleyi Klotz. ex Endl. and C. lusitanica Mill. Using leaf essential oils and DNA fingerprinting. J. Essent. Oil. Res. 9: 303– 309, 1997
[164]. R.A. Malizia, D.A. Cardell, J.S. Molli, S. González, P.E. Guerra, R.J. Grau. Volatile constituents of leaf oils from the Cupressaceae family: part I. Cupressus macrocarpa Hartw., C. arizonica Greene and C. torulosa Don species growing in Argentina. J. Essent. Oil. Res. 12: 59–63, 2000
[165]. S.A. Emami, H. Massoomi, M.S. Maghadam, J. Asili. Identification of volatile oil components from aerial parts of Chamaecyparis lawsoniana by GC-MS and 13C-NMR methods. J. Essent. Oils. Bear. Plants. 12: 661–665, 2009
[166]. R.P. Adams, T.A. Zanoni, A.F. Barrero, A. Lara. Comparisons of the leaf essential oils of Juniperus phoenicea, J. phoenicea subsp. Eumedi terranea Lebr. & Thiv. and J. phoenicea var. rurbinata (Guss.) Parl. J. Essent. Oil. Res. 8: 367–371, 1996
[167]. A. Angioni, A. Barra, T.M.. Russo, V. Coroneo, S. Dessi, P. Cabras. Chemical composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity. J. Agric. Food. Chem. 51: 3073–3078, 2003
[168]. A.F. Barrero, M.M. Herrador, P. Arteaga, J. Quílez, E. Sánchez-Fernádez, M. Akssira, M. Aitigri, F. Mellouki, S. Akkad. Chemical composition of the essential oils from leaves of Juniperus phoenicea L. from North Africa. J. Essent. Oil. Res. 18: 168–169, 2006
[169]. T. Dob, D. Dahmane, C. Chelghoum. Chemical composition of the essential oil of Juniperus phoenicea L. from Algeria. J. Essent. Oil. Res. 20: 15–20, 2008
[170]. E. Derwich, Z. Benziane, A. Boukir. Chemical composition of leaf essential oil of Juniperus phoenicea and evaluation of its antibacterial activity. Int. J. Agric. Biol. 12: 199–204, 2010
[171]. K. Mazari, N. Bendimerad, C. Bekhechi, X. Fernadez. Chemical composition and antimicrobial activity of essential oils isolated from Algerian Juniperus phoenicea L. and Cupressus sempervirens L. J. Med. Plant. Res. 4: 959–964, 2010
[172]. E.B. Spurr, P.G. McGregor. Potential invertebrate anti feedants for toxic baits used for vertebrate pest control. Science for Conservation 232. Department of Conservation, Wellington, 2003
[173]. J.A. Duke. Dr. Duke’s phytochemical and ethnobotanical databases. http://www.ars-grin.gov/duke/, 2004
[174]. P. Yang, Y. Ma. Repellent effect of plant essential oils against Aedes albopictus. J. Vector. Ecol. 30 2: 31–234, 2005
[175]. S.K. Pandey, S. Upadhyay, A.K. Tripathi. Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol. Res. 105: 507–512, 2009
[176]. O.A. Onayade, A. Looman, J.J.C. Scheffer, A. Baerheim-Svendsen. Analysis of the essential oil from twigs of Hemizygia welwitschii (Laminaceae). Essent. Oil Res. 1: 129-134, 1989
[177]. E.R. Martins, V.W.D. Casali, L.C.A. Barbosa, F. Carazza. Essential oil in the taxonomy of Ocimum selloi Benth. J. Braz. Chem. Soc. 8: 29–32, 1997
[178]. A.F. Traboulsi, Samih, El-Haj, M. Tueni, K. Taoubi, N.A. Nader, A. Mrad. Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest. Manag. Sci. 61: 597–604, 2005
[179]. F. Catteruccia, T. Nolan, T.G. Loukeris, C. Blass, C. Savakis, F.C. Kafatos, A. Crisanti. Stable germline transformation of The malaria mosquito Anopheles stephensi. Nature. 405: 959-962, 2000
[180]. C.J. Coates, N. Jasinskiene, L. Miyashiro, A.A. James. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. 95: 3748-3751, 1998
[181]. G.L. Grossman, C.S. Rafferty, J.R. Clayton, T.K., Stevens, O. Mukabayire. Benedict, M.Q. Germline transformation of the malaria vector, Anopheles gambiae, with the piggy Bac transposable element. Insect. Mol. Biol. 10: 597-604, 2001
[182]. N. Jasinskiene, C.J. Coates, M.Q. Benedict, A.J. Cornel, C.S. Rafferty, A.A. James, F.H. Collins. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc. Natl. Acad. Sci. 95: 3743-3747, 1998
[183]. P. Gabrieli, A. Smidler, F. Catteruccia. Engineering the control of mosquito-borne infectious diseases. Genome. Biol. 15: 1-9, 2014
[184]. E. Knipling. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48: 459-462, 1955
[185]. A. Aryan, MAE. Anderson, KM. Myles ZN. Adelman. TALEN-based gene disruption in the dengue vector Aedes aegypti. Plos One8:e60082, 2013
[186]. M. DeGennaro, C.S. McBride, L. Seeholzer, T. Nakagawa, E.J. Dennis, C. Goldman, N. Jasinskiene, A.A. James, L.B. Vosshall. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature; 498:487-491, 2013
[187]. A,L. Smidlerm, O. Terenzi, J. Soichot, E.A. Levashina, E.Marois. Targeted mutagenesis in the malaria mosquito using TALE nucleases. PLoS One. 8: 74511, 2013
[188]. F. Criscione, D.A. OBrochta, W. Reid. Genetic technologies for disease vectors. Curr. Opin. Insect. Sci. 10: 90-97, 2015
[189]. M. Bibikova, M. Golic, K.G. Golic, D. Carroll. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 161: 1169-1175, 2002
[190]. M. Bibikova, K. Beumer, J.K. Trautman, D. Carroll. Enhancing gene targeting with designed zinc finger nucleases. Science. 300: 764-764, 2003
[191]. I. Jantan, Z.M. Zaki. Development of environment-friendly insect repellents from the leaf oils of selected malaysian plants. ARBEC, 1999
[192]. M.A. Oshaghi, R. Ghalandari, H. Vatandoost, M. Shayeghi, M. Kamali-nejad, H. Tourabi-Khaledi, M. Abolhassani, M. Hashemzadeh. Repellent Effect of Extracts and Essential Oils of Citrus limon (Rutaceae) and Melissa officinalis (Labiatae) Against Main Malaria Vector, Anopheles stephensi (Diptera: Culicidae) Iranian. J. Publ. Health. 32 (4): 47-52, 2003
[193]. S.K. Maguranyi, C.E. Webb, S.M. Mansfield, R.C. Russell. Are commercially available essential oils from australian native plants repellent to mosquitoes. J. Am. Mosq. Control. Assoc. 25 (3): 292–300, 2009
[194]. M.O. Omolo, D. Okinyo, I.O. Ndiege, W. Lwande, A. Hassanali. Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochem. 65: 2797–2802, 2004
[195]. J.P.D. Paula, M.R.G. Carneiro, F.J.R.. Paumgartten. Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil. J. Ethnopharmacol. 88: 253–260, 2003
[196]. S. Phasomkusolsil, M. Soonwera. Insect repellent activity of medicinal plant oils against aedes aegypti (linn.) Anopheles minimus (theobald) and culex quinquefasciatus say based on protection time and biting rate. Southeast. Asian. J. Trop. Med. Public. Health. 41 (4): 831-840, 2010
[197]. S. Rajkumar, A. Jebanesan, Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi. Trop. Biomed. 24 (2), 71–75, 2007
[198]. A. Tawatsin, D. Steve, R. Wratten, R. Scott, U. Thavara. Techadamrongsin Y. Repellency of Volatile Oils from Plants against Three Mosquito Vectors. J. Vector. Ecol. 26 (1): 76-82, 2001
[199]. A.O. Oyedele, L.O. Orafidiya, A. Lamikanra, J.I. Olaifa. Volatility and mosquito repellency of hemizygia welwitschiirolfeoll and its formulations. Insect Sci. Applic. 20 (2): 123-128, 2000
[200]. M. Govindarajan. Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian. Pacific. J. Trop. Med. 106-111, 2011
[201]. T. Pushpanathan, A. Jebanesan, M. L. Govindarajan. Larvicidal, ovicidal and repellent activities of Cymbopogan citrates Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera : Culicidae). Trop. Biomed. 23 (2): 208–212, 2006
[202]. H. Nishimura. Aroma constituents in plants and their repellent activities against mosquitoes. Aroma. Res. 2: 257-267, 2001
Citation
Pathalam Ganesan, Samuel Rajan, Daniel Magesh, Tharsiusraja Williamraja, Michael Gabriel Paulraj, Savarimuthu Ignacimuthu, "Essential Oils from Plants: A Review on Eco-Friendly Mosquito Repellents," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.68-88, 2019 -
Open Access Article
Bioprospecting of Fungi for Melanin fabrication: A Comprehensive Review
Avinash Irappa Ammanagi, Abhijeeth Shivappa Badiger, Shivasharana C. T.
Review Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.89-100, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.89100
Abstract
Melanin is a gloomy diffusive shade, present as a self-protective operator in miscellaneous life forms including microorganisms, plants, animals and human beings. Melanin assumes numerous self-defensive parts, for example, hindering of UV radiation, free radical adsorption, and lethal iron chelation, penetrating of phenolic mixes and defending against ecological pressure. Therefore, it is a conventional compound in remedy, pharmacology and beauty care products. Melanin is arranged from L-tyrosine by means of a development of enzymatic and non-enzymatic reactions by the chemical tyrosinase (EC 1.14.18.1). To begin with, tyrosinase catalyzes the hydroxylation of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA). The L-DOPA is reacted to dopachrome, which is changed over to melanin by a progression of non-enzymatic oxido-reduction reactions. Chemical production of melanin is cost effective so microbial production of melanin is considered to be good in industrial scale. Melanin is critical component of some the microorganisms as reported. This review is concerned with transformed classes of melanin, pathway of melanin; factors influence the melanin production and application of melanin isolated from different fungi.Key-Words / Index Term
Melanin, Tyrosine, Tyrosinase, L-DOPA, FungiReferences
[1]. Borovansky J. History of melanosome research. In Melanins and melanosomes: biosynthesis, biogenesis, physiological, and pathological functions, Borovansky J, Riley PA (eds), Wiley-VCH Verlag GmbH & Co., Weinheim, , pp. 1-19, 2011.
[2]. Berzelius JJ. Lehrbuch der Chemie. Arnoldische Buchbandlung, Leipzig, pp. 67-69, 1840.
[3]. Ebbell, B. The Papyrus Ebers: the Greatest Egyptian Medical Document. Levin and Munksgaard, Copenhagen, Denmark, pp. 1-135, 1937.
[4]. Westerhof W. The discovery of the human melanocyte. Pigment Cell Research, 19(3), 183-193, 2006.
[5]. Sandra RPS, Gabriela SS, Jazmina CRA, Helen FL, Rita CRG. Melanin. In Production of melanin pigment by fungi and its biotechnological applications, Miroslav B (ed), Intech Open, Rijeka, Croatia, pp. 47-97, 2017.
[6]. Ruan L, He W, He J, Sun M, Yu Z. Cloning and expression of mel gene from Bacillus thuringiensis in Escherichia coli. Antonie Van Leeuwenhoek, 87, 283-288, 2005.
[7]. Cabrera-Valladares N, Martinez A, Pinero S, Lagunas-Munoz VH, Tinoco R, de Anda R, Vazquez-Duhalt R, Bolivar F, Gosset G. Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase. Enzyme Microb Technol, 38, 772-779, 2006.
[8]. Claus H, Decker H. Bacterial tyrosinases. Syst Appl Microbiol, 29, 3-14, 2006.
[9]. Wan X, Liu HM, Liao Y, Su Y, Geng J, Yang MY, Chen XD, Shen P. Isolation of a novel strain of Aeromonas media producing high levels of DOPA-melanin and assessment of the photoprotective role of the melanin in bioinsecticide applications. J Appl Microbiol 103, 2533-2541, 2007.
[10]. Yuan W, Burleigh SH, Dawson JO. Melanin biosynthesis by Frankia strain CeI5. Physiol Plant 131, 180- 190, 2007.
[11]. Shuster V, Fishman A. Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. J Mol Microbiol Biotechnol, 17, 188-200, 2009.
[12]. Ikeda R, Sugita T, Jacobson ES, Shinoda T. Laccase and melanization in clinically important Cryptococcus species other than Cryptococcus neoformans. J Clin Microbiol, 40, 1214-1218, 2002.
[13]. Kohashi PY, Kumagai T, Matoba Y, Yamamoto A, Maruyama M, Sugiyama M. An efficient method for the over expression and purification of active tyrosinase from Streptomyces castaneoglobisporus. Protein Expr Purif, 34, 202-207, 2004.
[14]. Marino SM, Fogal S, Bisaglia M, Moro S, Scartabelli G, De Gioia L, Spada A, Monzani E, Casella L, Mammi S, Bubacco L. Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Arch Biochem Biophys, 505, 67-74, 2011.
[15]. Fuqua WC, Coyne VE, Stein DC, Lin CM, Weiner RM. Characterization of melA: a gene encoding melanin biosynthesis from the marine bacterium Shewanella colwelliana. Gene, 109, 131-136, 1991.
[16]. Lopez-Serrano D, Solano F, Sanchez-Amat A. Identification of an operon involved in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Gene, 342, 179-187, 2004.
[17]. Selinheimo E, Saloheimo M, Ahola E, Westeholm-Parvinen A, Kalkkinen N, Buchert J, Kruus K. Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei. FEBS J, 273, 4322-4335, 2006.
[18]. Bell AA, Wheeler MH. Biosynthesis and functions of fungal melanins. Annual Review of Phytopathology, 24, 411-451, 1986.
[19]. Lewis FG, Antony MG. Melanin and novel melanin precursors from Aeromonas media. FEMS Microbiol Lett, 169, 261-268, 1998.
[20]. Raper HS. The anaerobic oxidases. Physiol Rev, 8, 245-282, 1928.
[21]. Mason HS. The chemistry of melanin: mechanism of the oxidation of dihydroxyphenyalanine by tyrosinase. J Biol Chem, 172, 83-99, 1948.
[22]. Nosanchuk JD, Casadevall A. Budding of melanized Cryptococcus neoformans in the presence or absence of L-DOPA. Microbiology, 149, 1945-1951, 2003a.
[23]. Riley PA. Melanin. Int J Biochem Cell Biol 29(11), 1235-1239, 1997.
[24]. Enochs WS, Nilges MJ, Swartz HM. A Standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment Cell Res, 6, 91-99, 1993.
[25]. Della-Cioppa G, Garger SJ, Sverlow GG, Turpen TH, Grill LK. Melanin production E. coli from a cloned tyrosinase gene. Biotechnology (NY), 8(7), 634-638, 1990.
[26]. Saiz-Jimenez C. Microbial melanins in stone monuments. Sci Total Environ, 167(1), 273-286, 1995.
[27]. del Marmol V, Beermann F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett, 381, 165-168, 1996.
[28]. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Gen Biol, 38, 143-158, 2003.
[29]. Plonka PM, Grabacka M. Melanin synthesis in microorganisms - biotechnological and medical aspects. Acta Biochim Pol, 53(3), 429-443, 2006.
[30]. Kobayashi T, Vieira WD, Potterf B, Sakai C, Imokawa G, Hearing VJ. Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis. J Cell Sci, 108, 2301-2309, 1995.
[31]. Nappi A, Ottaviani E. Cytotoxicity and cytotoxic molecules in invertebrates. Bio Essays, 22, 469-480, 2000.
[32]. Gibello A, Ferrer E, Sanz J, Martin M. Polymer production by Klebsiella pneumoniae 4-hydroxyphenylacetic acid hydroxylase genes cloned in Escherichia coli. Appl Environ Microbiol, 61, 4167-4171, 1995.
[33]. Kotob S, Coon SI, Quintero EJ, Weiner RM. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain and Shewanella colwelliana. Appl Environ Microbiol 61, 1620-1621, 1995.
[34]. Espin JC, Jolivet S, Wichers HJ. Kinetic study of the oxidation of γ-L-glutaminyl-4-hydroxybenzene catalyzed by mushroom (Agaricus bisporus) tyrosinase. J Agric Food Chem, 47, 3495-3502, 1999.
[35]. Funa N, Ohnishi Y, Fuji I, Shibuya M, Ebizuka Y, Horinouchi S. A new pathway for polyketide synthesis in microorganisms. Nature, 400, 897-899, 1999.
[36]. Jacobson ES. Pathogenic roles for fungal melanins. Clin Microbiol Rev, 13, 708-717, 2000.
[37]. Crippa R, Horak V, Prota G, Svoronos P, Wolfram L. Chemistry of melanins alkaloids. Chem Pharmacol, 36, 253-323, 1990.
[38]. Wilczok T, Bilińska B Buszman E, Kopera M. Spectroscopic studies of chemically modified synthetic melanins. Arch Biochem Biophys, 231(2), 257-262, 1984.
[39]. Duff GA, Roberts JE, Foster N. Analysis of the structure of synthetic and natural melanins by solid-phase NMR. Biochemistry, 27(18), 7112-7116, 1988.
[40]. Piattelli M, Fattorusso E, Nicolaus RA, Magno S. The structure of melanins and melanogenesis - V: ustilago melanin. Tetrahedron, 21(11), 3229-3236, 1965.
[41]. Stüssi H, Rast DM. The biosynthesis and possible function of γ-glutaminyl-4-hydroxybenzene in Agaricus bisporus. Phytochemistry, 20(10), 2347-2352, 1981.
[42]. Eisenman HC, Mues M, Weber SE, Frases S, Chaskes S, Gerfen G, Casadevall A. Cryptococcus neoformans laccase catalyses melanin synthesis from both D-and L-DOPA. Microbiology, 53(12), 3954-3962, 2007.
[43]. Frases S, Salazar A, Dadachova E, Casadevall A. Cryptococcus neoformans can utilize the bacterial melanin precursor homogentisic acid for fungal melanogenesis. Appl Environ Microbiol, 73(2), 615-621, 2007.
[44]. Garcia-Rivera J, Eisenman HC, Nosanchuk JD, Aisen P, Zaragoza O, Moadel T, Dadachova E, Casadevall A. Comparative analysis of Cryptococcus neoformans acid-resistant particles generated from pigmented cells grown in different laccase substrates. Fungal Genet Biol, 42(12), 989-998, 2005.
[45]. Gessler NN, Egorova AS, Belozerskaya TA. Melanin pigments of fungi under extreme environmental conditions. Appl Biochem Microbiol, 50(2), 105-113, 2014.
[46]. Geis PA, Wheeler MH, Szaniszlo PJ. Pentaketide metabolites of melanin synthesis in the dematiaceous fungus Wangiella dermatitidis. Arch Microbiol 137, 324-328, 1984.
[47]. Butler MJ, Day AW. Fungal melanins: a review. Can J Microbiol, 44(12), 1115-1136, 1998.
[48]. Henson JM, Butler MJ, Day AW. The dark side of the mycelium: melanins of phytopathogenic fungi. Annu Rev Phytopathol, 37(1), 447-471, 1999.
[49]. Fling M, Horowitz NH, Heinemann SF. The isolation and properties of crystalline tyrosinase from Neurospora. J Biol Chem, 238(6), 2045-2053, 1963.
[50]. Esser K. Phenoloxidases in the ascomycete Podospora anserina. I. The identification of laccase and tyrosinase in the wild strain. Arch Mikrobiol, 46, 217-226, 1963.
[51]. Bull AT, Carter BLA. The isolation of tyrosinase from Aspergillus nidulans, its kinetic and molecular properties and some consideration of its activity in vivo. Microbiology, 75(1), 61-73, 1973.
[52]. Williamson PR, Wakamatsu K, Ito S. Melanin biosynthesis in Cryptococcus neoformans. J Bacteriol, 180(6), 1570-1572, 1998.
[53]. Prota G. Melanins and melanogenesis. Academic Press, San Diego, CA, 1992.
[54]. Tsai HF, Fujii I, Watanabe A, Wheeler MH, Chang YC, Yasuoka Y, Ebizuka Y, Kwon-Chung KJ. Pentaketide melanin biosynthesis in Aspergillus fumigatus requires chain-length shortening of a heptaketide precursor. J BiolChem, 276, 29292-29298, 2001.
[55]. Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, Brakhage AA. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol, 75(2), 493-503, 2009.
[56]. Jolivet S, Arpin N, Wichers HJ, Pellon G. Agaricus bisporus browning: a review. Mycol Res 102(12), 1459-1483, 1998.
[57]. Wang G, Aazaz A, Peng Z, Shen P. Cloning and overexpression of a tyrosinase gene mel from Pseudomonas maltophila. FEMS Microbiol Lett, 185, 23-27, 2000.
[58]. Jacobson ES, Hove E, Emery HS. Antioxidant function of melanin in black fungi. Infect Immun 63(12), 4944-4945, 1995.
[59]. Gessler NN, Averyanov AA, Belozerskaya TA. Reactive oxygen species in regulation of fungal development. Biochemistry, 72(10), 1091-1109, 2007.
[60]. Arun G, Eyini M, Gunasekaran P. Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries). Indian J Exp Biol, 53(6), 380-387, 2015.
[61]. Cunha MML, Franzen AJ, Seabra SH, Herbst MH, Vugman NV, Borba LP, Souza W, Rozental S. Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol 10(1), 1-9, 2010.
[62]. Fogarty RV, Tobin JM. Fungal melanins and their interaction with metals. Enzyme Microb Technol, 19(4), 311-317, 1996.
[63]. Nosanchuk JD, Stark RE, Casadevall A. Fungal melanin: what do we know about structure?. Front Microbiol, 6, 1-7, 2015.
[64]. Lopaczynski W, Zeisel SH. Antioxidants, programmed cell death, and cancer. Nutr Res, 21(1), 295-307, 2001.
[65]. Hoogduijn MJ, Cemeli E, Anderson D, Wood JM, Thody AJ. Melanin protects against Ho-induced DNA strand breaks through its ability to bind Ca. Br J Dermatol 203, 148(4), 867.
[66]. Goncalves CRR, Pombeiro-Sponchiado SR. Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol Pharm Bull, 28(6), 1129-1131, 2005.
[67]. Harman D. Free radical theory of aging: an update. Ann N Y Acad Sci, 1067(1), 10-21, 2006.
[68]. Lu Y, Ye M, Song S, Li L, Shaikh F, Li J. Isolation, purification, and anti-aging activity of melanin from Lachnums ingerianum. Appl Biochem Biotechnol, 174(2), 762-771, 2014.
[69]. Mohagheghpour N, Waleh N, Garger SJ, Dousman L, Grill LK, Tusé D. Synthetic melanin suppresses production of proinflammatory cytokines. Cell Immunol, 199(1), 25-36, 2000.
[70]. Mednick AJ, Nosanchuk JD, Casadevall A. Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infect Immun, 73(4), 2012-2019, 2005.
[71]. Plonka PM, Grabacka M. Melanin synthesis in microorganisms - biotechnological and medical aspects. Acta Biochim Pol, 53(3), 429-443, 2006.
[72]. Cruvinel WDM, Mesquita Júnior D, Araújo JAP, Catelan TTT, Souza AWSD, Silva NPD, Andrade LEC. Immune system: Part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Revistabrasileira de Reumatologia, 50(4), 434-447, 2010.
[73]. Bocca AL, Brito PP, Figueiredo F, Tosta CE. Inhibition of nitric oxide production by macrophages in chromoblastomycosis: a role for Fonsecaea pedrosoi melanin. Mycopathologia, 161(4), 195-203, 2006.
[74]. Zhang J, Wang L, Xi L, Huang H, Hu Y, Li X, Huang X, Lu S, Sun J. Melanin in a meristematic mutant of Fonsecaea monophora inhibits the production of nitric oxide and Th1 cytokines of murine macrophages. Mycopathologia, 175(5-6), 515-522, 2013.
[75]. Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One, 2(5), 1-13, 2007.
[76]. Schweitzer AD, Howell RC, Jiang Z, Bryan RA, Gerfen G, Chen CC, Mah D, Cahill S, Casadevall A, Dadachova E. Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PLoS One, 4(9), 1-8, 2009.
[77]. Ye M, Guo G, Lu Y, Song S, Wang HY, Yang L. Purification, structure and anti-radiation activity of melanin from Lachnum YM404. Int J Biol Macromol, 63(1), 170-176, 2014.
[78]. Mostert AB, Powell BJ, Gentle IR, Meredith P. On the origin of electrical conductivity in the bio-electronic material melanin. Appl Phys Lett, 100(9), 093701, 2012.
[79]. Mironenko NV, Alekhina IA, Zhdanova NN, Bulat SA. Intraspecific variation in gamma-radiation resistance and genomic structure in the filamentous fungus Alternaria alternata: a case study of strains inhabiting Chernobyl reactor no. 4. Ecotoxicol Environ Saf, 45, 177-187, 2000.
[80]. Dighton J, Tugay T, Zhdanova N. Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett, 281(2), 109-120, 2008.
[81]. Apte M, Girme G, Bankar A, Ravikumar A, Zinjarde S. 3,4-dihydroxy-L-phenylalanine derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J Nanobiotechnol, 3-11, 2013.
[82]. Demain AL, Adrio JL. Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. Nat Compd Drugs 1, 251-289, 2008.
[83]. Dufossé L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N. Filamentous fungi are large scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol, 26, 56-61, 2014.
[84]. Kumar A, Vishwakarma HS, Singh J, Kumar M. Microbial pigments: production and their applications in various industries. Int J Pharm Chem Biol Sci, 5(1), 203-212, 2015.
[85]. Babitha S. Microbial pigments. In Biotechnology for agro-industrial residues utilization: utilization of agro-residues, Nigam PSN, Pandey A (eds), Springer, Netherlands, pp. 147-162, 2009.
[86]. Meyer V, Wu B, Ram AFJ. Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett, 33(3), 469-476, 2011.
[87]. Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol, 16(2), 231-238, 2005.
[88]. Akilandeswari P, Pradeep BV. Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol, 100 (4), 1631-1643, 2016.
[89]. Dikshit R, Tallapragada P. Monascus purpureus: a potential source for natural pigment production. J Microbiol Biotechnol Res, 1(4), 164-174, 2011.
[90]. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A. Use of several waste substrates for carotenoid-rich yeast biomass production. J Environ Manage 95(S), 338-342, 2012.
[91]. Sharmila G, Nidhi B, Muthukumaran C. Sequential statistical optimization of red pigment production by Monascus purpureus (MTCC 369) using potato powder. Ind Crops Prod, 44, 158-164, 2013.
[92]. Prajapati VS, Soni N, Trivedi UB, Patel KC. An enhancement of red pigment production by submerged culture of Monascus purpureus MTCC 410 employing statistical methodology. Biocatal Agric Biotechnol, 3(2), 140-145, 2014.
[93]. da Costa Souza PN, Grigoletto TLB, de Moraes LAB, Abreu LM, Guimarães LHS, Santos CR, Galvão LR, Cardoso PG. Production and chemical characterization of pigments in filamentous fungi. Microbiology, 162, 12-22, 2015.
[94]. Hajjaj H, Goma G, François JM. Effect of the cultivation mode on red pigments production from Monascus ruber. Int J Food Sci Technol, 50(8), 1-6, 2015.
[95]. Zhang M, Xiao G, Thring RW, Chen W, Zhou H, Yang H. Production and characterization of melanin by submerged culture of culinary and medicinal fungi Auricularia auricula. Appl Biochem Biotechnol, 176(1), 253-266, 2015.
[96]. Joshi VK, Attri D, Baja A, Bhushan S. Microbial pigments. Indian J Biotechnol 2, 362-369, 2003.
[97]. Ahn J, Jung J, Hyung W, Haam S, Shin C. Enhancement of Monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnol Prog, 22(1), 338-340, 2006.
[98]. Lisboa HCF. Influence of culture conditions on the production of melanin pigment by Aspergillus fungus. Sao Paulo State University, Araraquara, Brazil, 2003.
[99]. Orozco SFB, Kilikian BV. Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J Microbiol Biotechnol, 24(2), 263-268, 2008.
[100]. Kang B, Zhang X, Wu Z, Wang Z, Park S. Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzyme Microb Technol, 55, 50-57, 2014.
[101]. Tudor D, Robinson SC, Cooper PA. The influence of pH on pigment formation by lignicolous fungi. Int Biodeterior Biodegrad, 80, 22-28, 2013.
[102]. Méndez A, Pérez C, Montañéz JC, Martínez G, Aguilar CN. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B, 12(12), 961-968, 2011.
[103]. Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, Oh BT. Effect of light on growth, intracellular and extracellular pigment production by five pigment producing filamentous fungi in synthetic medium. J Biosci Bioeng, 109(4), 346-350, 2010.
[104]. Zhou Z, Yin Z, Hu X. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation. Biotechnol Appl Biochem, 61(6), 716-723, 2014.
[105]. Said FM, Chisti Y, Brooks J. The effects of forced aeration and initial moisture level on red pigment and biomass production by Monascus ruber in packed bed solid state fermentation. Int J Environ Sci Dev, 1(1), 1-4, 2010.
[106]. Ruiz B, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Rodríguez-Sanoja R, Sánchez S, Langley E. Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol, 36(2), 146-167, 2010.
[107]. Pradeep FS, Begam MS, Palaniswamy M, Pradeep BV. Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Appl Sci J, 22(1), 70-77, 2013.
[108]. Gunasekaran S, Poorniammal R. Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr J Biotechnol, 7(12), 1894-1898, 2008.
[109]. Nee Nigam PS. Production of bioactive secondary metabolites. In Biotechnology for agro-industrial residues utilization: utilization of agro-residues, Nigam PSN, Pandey A (eds), Springer, Netherlands, p. 129-145, 2009.
[110]. Tydelskaia IL, Rozhavin MA, Sologub VV. Pathogenicity factors of melanin-forming strains of Pseudomonas aeruginosa. Zh Mikrobiol Epidemiol Immunobiol 73-76, 1981.
[111]. Quereshi S, Pandey AK, Singh J. Optimization of fermentation conditions for red pigment production from Phomaher barum (FGCC# 54) under submerged cultivation. J Phytol 2(9), 1-8, 2010.
[112]. Celestino JR, de Carvalho LE, da Paz Lima, M, Lima AM, Ogusku MM, de Souza JVB. Bioprospecting of amazon soil fungi with the potential for pigment production. Process Biochem, 49(4), 569-575, 2014.
[113]. Jalmi P, Bodke P, Wahidullah S, Raghukumar S. The fungus Gliocephalotrichum simplex as a source of abundant, extracellular melanin for biotechnological applications. World J Microbiol Biotechnol, 28(2), 505-512, 2012.
[114]. Sun S, Zhang X, Chen W, Zhang L, Zhu H. Production of natural edible melanin by Auricularia auricular and its physicochemical properties. Food Chem, 196, 486-492, 2016.
[115]. Sun S, Zhang X, Sun S, Zhang L, Shan S, Zhu H. Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chem, 190, 801-807, 2016.
[116]. Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I - bioprocesses and products. Process Biochem, 35(10), 1153-1169, 2000.
[117]. Singhania RR, Soccol CR, Pandey A. Application of tropical agro-industrial residues as substrate for solid-state fermentation processes. In: Current developments in solid-state fermentation, Pandey A, Soccol CR, Larroche C (eds), Springer, New York, pp. 412-442.
[118]. Lopes FC, Tichota DM, Pereira JQ, Segalin J, De Oliveira Rios A, Brandelli A. Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem Biotechnol, 171(3), 616-625, 2013.
[119]. Velmurugan P, Hur H, Balachandar V, Kamala-Kannan S, Lee KJ, Lee SM, Chae JC, Oh BT. Monascus pigment production by solid-state fermentation with corn cob substrate. J Biosci Bioeng, 112(6), 590-594, 2011.
[120]. Babitha S, Soccol CR, Pandey A. Jackfruit seed - a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol Biotechnol, 44(4), 465-471, 2006.
[121]. Shivprasad S, Page W. Catechol formation and melanization by a Na+-dependent Azotobacter chroococcum: a protective mechanism for aeroadaption? Appl Environ Microbiol, 55, 1811-1817, 1989.
[122]. Rani MHS, Ramesh T, Subramanian J, Kalaiselvam M. Production and characterization of melanin pigment from halophilic black yeast Hortaea werneckii. Int J Pharma Res Rev, 2(8), 9-17, 2013.
[123]. Zou Y, Tian M. Fermentative production of melanin by Auricularia auricula. J Food Process Preserv, 41(3), e12909, https://doi.org/10.1111/jfpp.12909, 2017.
[124]. Goncalves PJ, Baffa O, Graeff CFO, Gonçalves PJ, Filho OB. Effects of hydrogen on the electronic properties of synthetic melanin. J Appl Phys 99(10), 104701, 2006.
[125]. Meredith P, Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res, 19(6), 572-594, 2006.
[126]. Ambrico M, Ambrico PF, Ligonzo T, Cardone A, Cicco SR, d’Ischia M, Farinola GM. From commercial tyrosine polymers to a tailored polydopamine platform: concepts, issues and challenges en route to melanin-based bioelectronics. J Mater Chem C, 3(25), 6413-6423, 2015.
[127]. Ligonzo T, Ambrico M, Augelli V, Perna G, Schiavulli L, Tamma MA, Biagi PF, Minafra A, Capozzi V. Electrical and optical properties of natural and synthetic melanin biopolymer. J Non Cryst Solids, 355(22-23), 1221-1226, 2009.
[128]. Rizzo DM, Blanchette RA, Palmer MA. Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot, 70(8), 1515-1520, 1992.
[129]. Goncalves CRR, Pombeiro-Sponchiado SR. Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol Pharm Bull, 28(6), 1129-1131, 2005.
[130]. Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR. Characterization of melanin pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol, 28(4), 1467-1474, 2012.
[131]. Caporalin CB. Comparison of biosorption of rare earth metals by melanized biomass of Aspergillus nidulans fungus in free and immobilized forms. Sao Paulo State University, Araraquara, Brazil, 2011.
[132]. Zhdanova NN, Vasilevskaya AI, Sadovnikov YS, Artyshkova LA. Dynamics of micromycete complexes from soils contaminated with radionuclides. Mikol i Fitopatol, 24(6), 504-512, 1990.
[133]. Singleton I, Tobin JM. Fungal interactions with metals and radionuclides for environmental bioremediation In Fungi and environmental change. Frankland JC, Magan N, Gadd GM (eds), Cambridge University Press, Cambridge, pp. 282-298, 1996.
[134]. Steiner M, Linkov I, Yoshida S. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. J Environ Radioact, 58(2), 217-241, 2002.
[135]. Zhdanova NN, Tugay T, Dighton J, Zheltonozhsky, V, Mcdermott P. Ionizing radiation attracts soil fungi. Mycol Res, 108(9), 1089-1096, 2004.
[136]. Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustain, 7(2), 2189-2212, 2015.
[137]. Shakya M, Sharma P, Meryem SS, Mahmood Q, Kumar A. Heavy metal removal from industrial wastewater using fungi: uptake mechanism and biochemical aspects. J Environ Eng, 142(9), C6015001, 2015.
[138]. Araújo M, Viveiros R, Correia TR, Correia IJ, Bonifácio VDB, Casimiro T, Aguiar-Ricardo A. Natural melanin: a potential pH-responsive drug release device. Int J Pharm, 469(1), 140-145, 2014.
[139]. Schweitzer AD, Revskaya E, Chu P, Pazo V, Friedman M, Nosanchuk JD, Cahill S, Frases S, Casadevall A, Dadachova E. Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. Int J Radiat Oncol Biol Phys, 78(5), 1494-1502, 2010.
[140]. Berliner DL, Erwin RL, McGee DR. Therapeutic uses of melanin. Patent No. 5776968, 1998.
Citation
Avinash Irappa Ammanagi, Abhijeeth Shivappa Badiger, Shivasharana C. T., "Bioprospecting of Fungi for Melanin fabrication: A Comprehensive Review," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.89-100, 2019 -
Open Access Article
Determination of Different Diseases and Preventive Measures of Mulberry Silkworm
Neha Singh Sisodia, S. Gaherwal, Renu Jain
Research Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.101-104, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.101104
Abstract
The present study deals with the determination of different disease and preventive measures of mulberry silkworm, (Bombyx mori). Epizootiology, development of immunodiagnostic kit, fluorescent antibody technique and use of ideal disinfectant, chemotherapy and thermo-therapy techniques and management strategies have been addressed for identification, destruction, prevention and control of disease causing micro-organisms. Three years survey was conducted on the incidence of silkworm diseases namely, Grasserie, Flacherie, Muscardine and pebrine, the data revealed that grasserie and flacherie incidence were maximum in summer season and minimum in winter season whereas muscardine was observed high in winter.Key-Words / Index Term
Bombyx mori L., Grasserie, Flacherie, Muscardine and pebrineReferences
[1] R. Rao, “Variability in the diseases of hybrids silkworm, Bombyx mori”, Journal of Sericultural Sciences, Mysore, vol. 18, no. 5, (2003), pp. 96-99.
[2] J. Das and T. Shamsuddin. Studied high temperature induced sterility in silkworm Indian Silk. J. Seric. Sci. Japan. Vol. 45, no. 3, (2006), pp. 124-130.
[3] K. Sadhu, and H. Rao. Studied tasar race–Bogai, mylitta with respect to cocoon characters and production technology. J. indust. Ent., Mysore.VOL. 67, no. 2, (2014), pp. 315-340.
[4] T. Savanurmath, and L.Sharma. Selection of diseased and healthy silkworm strain through high temperature rearing of fifth instar larvae. Central Silk, Bangalore, India. Vol. 45, no. 7, (2014), pp.234-241
[5] O. Itushi, “Silkworm nutrition on mulberry plantation in Tokyo”, J. seric.sci, Jpn; vol. 48, no. 8, (2012), pp. 282- 286.
[6] A. Biram and H. Gowda, “Silkworm seed technology”. In Appropriate sericulture technique Central Silk Board, Bangalore, India, vol. 89, no. 4, (2009), pp. 590 –599.
[7] H. Akai, K. Kiguchi and K. Mori, “Increased accumulation of silk protein accompanies KJH-induced prolongation of larval life in Bombyx mori L”. Applied Entomology and Zoology, vol. 67, (1971), pp. 218-220.
[8] H. Akai, K. Kiguchi and K. Mori, “Influence of thiadiazole on the growth and metamorphosis of Bombyx larvae”. Bulletin of the Sericultural Experiment Station of Japan, vol. 32, (1973), pp. 287-305.
[9] H. Akai and K. Kiguchi, “Ultrastructural changes of the posterior silk gland cells from the allata-ectomized 4th-instar larvae of Bombyx mori”. Bulletin of the Sericultural Experiment Station of Japan, vol. 28, (1981), pp. 1-14.
[10] H. Akai, K. Kiguchi, Y. Kobari and A. Shibukawa, “Practical utilization of juvenoids for increasing silk production”. Scientific Papers of the Institute of Organic Physical Chemistry, vol. 22, (1981), pp. 781-792.
[11] H. Akai, K. Kimura, M. Kiuchi and A. Shibukawa, “Effects of anti-juvenoid treatment on cocoon and cocoon filaments in Bombyx mori”. Journal of Sericultural Science of Japan, vol. 53, (1984), pp. 545-546.
[12] C.F. Chang, S. Murakoshi and S. Tamura, “Giant cocoon formation in the silkworm, Bombyx mori L. topically treated with methylenedioxyphenyl derivates”. Agricultural Biology and Chemistry, vol. 36, (1972), pp. 629-694.
[13] S.K. Chowdhary, F. Sehnal, S.K. Raj, P.S. Raju and S. Mathu, “Giant cocoon formation in Bombyx mori L. topically treated with juvenile hormone”. SJ-42-F. Sericologia, vol. 26, (1986), pp. 455-457.
Citation
Neha Singh Sisodia, S. Gaherwal, Renu Jain, "Determination of Different Diseases and Preventive Measures of Mulberry Silkworm," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.101-104, 2019
First Previous |
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.