References
[1] K.R. Hema, “Review of Research on Production Methods of Hydrogen: Future Fuel”, European Journal of Biotechnology and Bioscience, Vol. 1, pp. 84-93, 2013.
[2] D. Das, T.N. Veziroglu, “Hydrogen production by biological processes: a survey of literature”, International Journal of Hydrogen Energy, Vol. 26, pp. 13-28, 2001.
[3] V.C. Kalia, S. Lal, R. Ghai, M. Mandal, A. Chauhan, “Mining genomic databases to identify novel hydrogen producers”, Trends in Biotechnology, Vol. 21, pp. 152-156, 2003.
[4] R. Nandi, S. Sengupta, “Microbial production of hydrogen: an overview”, Critical Reviews in Microbiology, Vol. 24, pp. 61-84, 1998.
[5] I.K. Kapdan, F. Kargi, “Bio-hydrogen production from waste materials”, Enzyme and Microbial Technology, Vol. 38, pp. 569–582, 2006.
[6] G.R. Kumar, N. Chowdhary, “Biotechnological and bioinformatics approaches for augmentation of biohydrogen production: A review’, Renewable and Sustainable Energy Reviews, Vol. 56, pp. 1194-1206, 2016.
[7] T. de Vrije, R.R. Bakker, M.A. Budde, M.H. Lai, A.E. Mars, P.A. Claassen, “Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana”, Biotechnology for Biofuels, Vol. 2, pp. 12, 2009.
[8] Y. Ueno, S. Otsuka, M. Morimoto, “Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture”, Journal of Fermentation and Bioengineering, Vol. 82, pp. 194-197, 1996.
[9] D. Liu, R.J. Zeng, I. Angelidaki, “Hydrogen and methane production from household solid waste in the two-stage fermentation process”, Water Research, Vol. 40, pp. 2230-2236, 2006.
[10] G. Kumar, P. Bakonyi, P. Sivagurunathan, S.H. Kim, N. Nemestothy, K. Belafi-Bako, C.Y. Lin, “Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains”, Journal of Bioscience and Bioengineering, Vol. 120, pp. 155-160, 2015 .
[11] P. Bakonyi, N. Nemestóthy, V. Simon, K. Bélafi-Bakó, “Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors”, Renewable and Sustainable Energy Reviews, Vol. 40, pp. 806-813, 2014.
[12] R. Agren, L. Liu, S. Shoaie, W. Vongsangnak, I. Nookaew, J. Nielsen, “The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum”, PLOS Computational Biology, Vol. 9, pp. e1002980, 2013.
[13] E. Ruppin, J.A. Papin, L.F. de Figueiredo, S. Schuster, “Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks”, Current Opinion in Biotechnology, Vol. 21, pp. 502-510, 2010.
[14] C.T. Trinh, A. Wlaschin, F. Srienc, “Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism”, Applied Microbiology and Biotechnology, Vol. 81, pp. 813-826, 2009.
[15] M.T. Prausse, S. Schauble, R. Guthke, S. Schuster, “Computing the various pathways of penicillin synthesis and their molar yields”, Biotechnology and Bioengineering, Vol. 113, pp. 173-181, 2016.
[16] C.P. Rajadurai, A. Selvaraj, G.R. Kumar, “Elementary Flux Mode Analysis of Acetyl-CoA Pathway in Carboxydothermus hydrogenoformans Z-2901”, Advances in Bioinformatics, Vol. 2014: 928038, 10 pages, 2014.
[17] A. Selvaraj, N. Chowdhary, C.P. Rajadurai, N. Ravi, G.R. Kumar, “Elementary flux mode analysis of central carbon metabolism of Geobactersulfurreducens PCA for electricity production”, International Conference on Recent Trends in Information Technology, India, pp. 514-518, 2013.
[18] P. Horvat, M. Koller, G. Braunegg, “Recent advances in elementary flux modes and yield space analysis as useful tools in metabolic network studies”, World Journal of Microbiology and Biotechnology, Vol. 31, pp. 1315-1328, 2015.
[19] S. Schuster, T. Dandekar, D.A. Fell, “Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering,” Trends in Biotechnology, Vol. 17, pp. 53–60, 1999.
[20] J. Zanghellini, D.E. Ruckerbauer, M. Hanscho, C. Jungreuthmayer, “Elementary flux modes in a nutshell: properties, calculation and applications”, Biotechnology Journal , Vol. 8, pp. 1009-1016, 2013.
[21] R. Carlson, D. Fell, F. Srienc, “Metabolic pathway analysis of a recombinant yeast for rational strain development”, Biotechnology and Bioengineering, Vol. 79, pp. 121-134, 2002.
[22] N.C. Duarte, B.O. Palsson, P. Fu, “Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae”, BMC Genomics, Vol. 5, pp. 63, 2004.
[23] J.C. Liao, M.K. Oh, “Toward predicting metabolic fluxes in metabolically engineered strains”, Metabolic Engineering, Vol. 1, pp. 214-223, 1999.
[24] J.O. Kromer, C. Wittmann, H. Schroder, E. Heinzle, “Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum”, Metabolic Engineering, Vol. 8, pp. 353-369, 2006.
[25] M.M. Kabir, M.M. Ho, K. Shimizu, “Effect of ldhA gene deletion on the metabolism of Escherichia coli based on gene expression, enzyme activities, intracellular metabolite concentrations, and metabolic flux distribution”, Biochemical Engineering Journal , Vol. 26, pp. 1–11, 2005.
[26] R. Nandi, S. Sengupta, “Involvement of anaerobic reductases in the spontaneous lysis of formate by immobilized cells of Escherichia coli”, Enzyme and Microbial Technology, Vol. 19, pp. 20-25, 1996.
[27] A.A. Bielen, M.R. Verhaart, J. van der Oost, S.W. Kengen, “Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives”, Life (Basel), Vol. 3, pp. 52-85, 2013.
[28] N. Chowdhary, A. Selvaraj, L. KrishnaKumaar, G.R. Kumar, “Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production”, PLoS One, Vol. 10: e0133183, 2015.
[29] A. Montagud, E. Navarro, P. Fernandez de Cordoba, J.F. Urchueguia, K.R. Patil, “Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium”, BMC Systems Biology, Vol. 4, pp. 156, 2010.
[30] A. Srivastava, P. Somvanshi, B.N. Mishra, “Reconstruction and visualization of carbohydrate, N-glycosylation pathways in Pichia pastoris CBS7435 using computational and system biology approaches”, Systems and Synthetic Biology, Vol. 7,pp. 7-22, 2013.
[31] O. Ates, E.T. Oner, K.Y. Arga, “Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043”, BMC Systems Biology, Vol. 5, pp. 12, 2011.
[32] C.B. Milne, J.A. Eddy, R. Raju, S. Ardekani, P.J. Kim, R.S. Senger, Y.S. Jin, H.P. Blaschek, N.D. Price, “Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052”, BMC Systems Biology, Vol. 5, pp. 130, 2011.
[33] S. Tabe-Bordbar, S.A. Marashi, “Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism”, Biotechnology Letters, Vol. 35, pp. 2039-2044, 2013.
[34] A. von Kamp, S. Schuster, “Metatool 5.0: fast and flexible elementary modes analysis”, Bioinformatics, Vol. 22, pp. 1930-1931, 2006.
[35] S. Klamt, J. Saez-Rodriguez, E.D. Gilles, “Structural and functional analysis of cellular networks with CellNetAnalyzer”, BMC Systems Biology, Vol. 1, pp. 2, 2007.
[36] J. Austin, J.R. Aprille, “Net adenine nucleotide transport in rat liver mitochondria is affected by both the matrix and the external ATP/ADP ratios”, Archives of Biochemistry and Biophysics, Vol. 222, pp. 321-325, 1983.
[37] S. Schuster, C. Hilgetag, J.H. Woods, D.A. Fell, “Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism”, Journal of Mathematical Biology, Vol. 45, pp. 153-181, 2002.
[38] J. Stelling, J, S. Klamt, K. Bettenbrock, S. Schuster, E.D. Gilles, “Metabolic network structure determines key aspects of functionality and regulation”, Nature, Vol. 420, pp. 190-193, 2002.
[39] M. Cha, D. Chung, J.G. Elkins, A.M. Guss, J. Westpheling, “Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass”, Biotechnology for Biofuels, Vol. 6, pp. 85, 2013.
[40] J. Meng, Z. Xu, J. Guo, Y. Yue, X. Sun, “Analysis of enhanced current-generating mechanism of Geobacter sulfurreducens strain via model-driven metabolism simulation”, PLoS One, Vol. 8: e73907, 2013.
[41] P. Erdrich, R. Steuer, S. Klamt, “An algorithm for the reduction of genome-scale metabolic network models to meaningful core models”, BMC Systems Biology, Vol. 9, pp. 48, 2015.