References
[1] G. F. Hatfull, “Bacteriophage genomics,” Current Opinion in Microbiology, vol. 11, no. 5, Oct. 2008, doi: 10.1016/j.mib.2008.09.004.
[2] L. J. Piddock, “The crisis of no new antibiotics—what is the way forward?,” The Lancet Infectious Diseases, vol. 12, no. 3, Mar. 2012, doi: 10.1016/S1473-3099(11)70316-4.
[3] D. M. Lin, B. Koskella, and H. C. Lin, “Phage therapy: An alternative to antibiotics in the age of multi-drug resistance,” World Journal of Gastrointestinal Pharmacology and Therapeutics, vol. 8, no. 3, 2017, doi: 10.4292/wjgpt.v8.i3.162.
[4] R. T. Schooley et al., “Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection,” Antimicrobial Agents and Chemotherapy, vol. 61, no. 10, Oct. 2017, doi: 10.1128/AAC.00954-17.
[5] A. P. Sagona, A. M. Grigonyte, P. R. MacDonald, and A. Jaramillo, “Genetically modified bacteriophages,” Integrative Biology, vol. 8, no. 4, 2016, doi: 10.1039/C5IB00267B.
[6] R. Marzari, D. Sblattero, M. Righi, and A. Bradbury, “Extending filamentous phage host range by the grafting of a heterologous receptor binding domain,” Gene, vol. 185, no. 1, Jan. 1997, doi: 10.1016/S0378-1119(96)00623-3.
[7] K. Yehl et al., “Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis,” Cell, vol. 179, no. 2, Oct. 2019, doi: 10.1016/j.cell.2019.09.015.
[8] P. Lucchesi, M. Carraway, and M. G. Marinus, “Analysis of forward mutations induced by N-methyl-N’-nitro-N-nitrosoguanidine in the bacteriophage P22 mnt repressor gene,” Journal of Bacteriology, vol. 166, no. 1, Apr. 1986, doi: 10.1128/jb.166.1.34-37.1986.
[9] A. M. Grigonyte et al., “Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7,” Viruses, vol. 12, no. 2, Feb. 2020, doi: 10.3390/v12020193.
[10] M. M. Jore, S. J. J. Brouns, and J. van der Oost, “RNA in Defense: CRISPRs Protect Prokaryotes against Mobile Genetic Elements,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 6, Jun. 2012, doi: 10.1101/cshperspect.a003657.
[11] J. Bondy-Denomy, A. Pawluk, K. L. Maxwell, and A. R. Davidson, “Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system,” Nature, vol. 493, no. 7432, Jan. 2013, doi: 10.1038/nature11723.
[12] K. S. Makarova et al., “Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants,” Nature Reviews Microbiology, vol. 18, no. 2, Feb. 2020, doi: 10.1038/s41579-019-0299-x.
[13] A. Hatoum-Aslan, “Phage Genetic Engineering Using CRISPR–Cas Systems,” Viruses, vol. 10, no. 6, Jun. 2018, doi: 10.3390/v10060335.
[14] R. Kiro, D. Shitrit, and U. Qimron, “Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system,” RNA Biology, vol. 11, no. 1, Jan. 2014, doi: 10.4161/rna.27766.
[15] A. A. Gomaa, H. E. Klumpe, M. L. Luo, K. Selle, R. Barrangou, and C. L. Beisel, “Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems,” mBio, vol. 5, no. 1, Feb. 2014, doi: 10.1128/mBio.00928-13.
[16] B. Martel and S. Moineau, “CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages,” Nucleic Acids Research, vol. 42, no. 14, Aug. 2014, doi: 10.1093/nar/gku628.
[17] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier, “A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity,” Science, vol. 337, no. 6096, Aug. 2012, doi: 10.1126/science.1225829.
[18] K. S. Makarova, N. v Grishin, S. A. Shabalina, Y. I. Wolf, and E. v Koonin, “A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action,” Biology Direct, vol. 1, no. 1, 2006, doi: 10.1186/1745-6150-1-7.
[19] S. J. J. Brouns et al., “Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes,” Science, vol. 321, no. 5891, Aug. 2008, doi: 10.1126/science.1159689.
[20] L. J. Marinelli et al., “BRED: A Simple and Powerful Tool for Constructing Mutant and Recombinant Bacteriophage Genomes,” PLoS ONE, vol. 3, no. 12, Dec. 2008, doi: 10.1371/journal.pone.0003957.
[21] D. L. Court, J. A. Sawitzke, and L. C. Thomason, “Genetic Engineering Using Homologous Recombination,” Annual Review of Genetics, vol. 36, no. 1, Dec. 2002, doi: 10.1146/annurev.genet.36.061102.093104.
[22] K. C. Murphy, “Use of Bacteriophage ? Recombination Functions To Promote Gene Replacement in Escherichia coli,” Journal of Bacteriology, vol. 180, no. 8, Apr. 1998, doi: 10.1128/JB.180.8.2063-2071.1998.
[23] D. Yu, H. M. Ellis, E.-C. Lee, N. A. Jenkins, N. G. Copeland, and D. L. Court, “An efficient recombination system for chromosome engineering in Escherichia coli,” Proceedings of the National Academy of Sciences, vol. 97, no. 11, May 2000, doi: 10.1073/pnas.100127597.
[24] H. M. Ellis, D. Yu, T. DiTizio, and D. L. Court, “High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides,” Proceedings of the National Academy of Sciences, vol. 98, no. 12, Jun. 2001, doi: 10.1073/pnas.121164898.
[25] S. Datta, N. Costantino, and D. L. Court, “A set of recombineering plasmids for gram-negative bacteria,” Gene, vol. 379, Sep. 2006, doi: 10.1016/j.gene.2006.04.018.
[26] Y. Zhang, F. Buchholz, J. P. P. Muyrers, and A. F. Stewart, “A new logic for DNA engineering using recombination in Escherichia coli,” Nature Genetics, vol. 20, no. 2, Oct. 1998, doi: 10.1038/2417.
[27] J. P. P. Muyrers, Y. Zhang, and A. F. Stewart, “Techniques: Recombinogenic engineering–new options for cloning and manipulating DNA,” Trends in Biochemical Sciences, vol. 26, no. 5, May 2001, doi: 10.1016/S0968-0004(00)01757-6.
[28] D. Manna, S. Deng, A. M. Breier, and N. P. Higgins, “Bacteriophage Mu Targets the Trinucleotide Sequence CGG,” Journal of Bacteriology, vol. 187, no. 10, May 2005, doi: 10.1128/JB.187.10.3586-3588.2005.
[29] A. B. Oppenheim, A. J. Rattray, M. Bubunenko, L. C. Thomason, and D. L. Court, “In vivo recombineering of bacteriophage ? by PCR fragments and single-strand oligonucleotides,” Virology, vol. 319, no. 2, Feb. 2004, doi: 10.1016/j.virol.2003.11.007.
[30] L. J. Marinelli, G. F. Hatfull, and M. Piuri, “Recombineering,” Bacteriophage, vol. 2, no. 1, Jan. 2012, doi: 10.4161/bact.18778.
[31] S. K. Sharan, L. C. Thomason, S. G. Kuznetsov, and D. L. Court, “Recombineering: a homologous recombination-based method of genetic engineering,” Nature Protocols, vol. 4, no. 2, Feb. 2009, doi: 10.1038/nprot.2008.227.
[32] D. P. Pires, S. Cleto, S. Sillankorva, J. Azeredo, and T. K. Lu, “Genetically Engineered Phages: a Review of Advances over the Last Decade,” Microbiology and Molecular Biology Reviews, vol. 80, no. 3, Sep. 2016, doi: 10.1128/MMBR.00069-15.
[33] W. C. Summers, “Bacteriophage Therapy,” Annual Review of Microbiology, vol. 55, no. 1, Oct. 2001, doi: 10.1146/annurev.micro.55.1.437.
[34] T. M. Viertel, K. Ritter, and H.-P. Horz, “Viruses versus bacteria--novel approaches to phage therapy as a tool against multidrug-resistant pathogens,” Journal of Antimicrobial Chemotherapy, vol. 69, no. 9, Sep. 2014, doi: 10.1093/jac/dku173.
[35] F. L. Gordillo Altamirano and J. J. Barr, “Phage Therapy in the Postantibiotic Era,” Clinical Microbiology Reviews, vol. 32, no. 2, Mar. 2019, doi: 10.1128/CMR.00066-18.
[36] A. M. Box, M. J. McGuffie, B. J. O’Hara, and K. D. Seed, “Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering,” Journal of Bacteriology, vol. 198, no. 3, Feb. 2016, doi: 10.1128/JB.00747-15.
[37] J. Shen, J. Zhou, G.-Q. Chen, and Z.-L. Xiu, “Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9,” Journal of Virology, vol. 92, no. 17, Sep. 2018, doi: 10.1128/JVI.00534-18.
[38] P. Tao, X. Wu, W.-C. Tang, J. Zhu, and V. Rao, “Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9,” ACS Synthetic Biology, vol. 6, no. 10, Oct. 2017, doi: 10.1021/acssynbio.7b00179.
[39] S. J. Yaung, K. M. Esvelt, and G. M. Church, “CRISPR/Cas9-Mediated Phage Resistance Is Not Impeded by the DNA Modifications of Phage T4,” PLoS ONE, vol. 9, no. 6, Jun. 2014, doi: 10.1371/journal.pone.0098811.
[40] F. Hoshiga, K. Yoshizaki, N. Takao, K. Miyanaga, and Y. Tanji, “Modification of T2 phage infectivity toward Escherichia coli O157:H7 via using CRISPR/Cas9,” FEMS Microbiology Letters, vol. 366, no. 4, Feb. 2019, doi: 10.1093/femsle/fnz041.
[41] S. M. N. Bari, F. C. Walker, K. Cater, B. Aslan, and A. Hatoum-Aslan, “Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10,” ACS Synthetic Biology, vol. 6, no. 12, Dec. 2017, doi: 10.1021/acssynbio.7b00240.
[42] T. Fehér, I. Karcagi, F. R. Blattner, and G. Pósfai, “Bacteriophage recombineering in the lytic state using the lambda red recombinases,” Microbial Biotechnology, vol. 5, no. 4, Jul. 2012, doi: 10.1111/j.1751-7915.2011.00292.x.
[43] J. L. da Silva et al., “Application of BRED technology to construct recombinant D29 reporter phage expressing EGFP,” FEMS Microbiology Letters, vol. 344, no. 2, Jul. 2013, doi: 10.1111/1574-6968.12171.
[44] S. Datta, N. Costantino, X. Zhou, and D. L. Court, “Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages,” Proceedings of the National Academy of Sciences, vol. 105, no. 5, Feb. 2008, doi: 10.1073/pnas.0709089105.
[45] R. M. Dedrick, C. A. Guerrero Bustamante, R. A. Garlena, R. S. Pinches, K. Cornely, and G. F. Hatfull, “Mycobacteriophage ZoeJ: A broad host-range close relative of mycobacteriophage TM4,” Tuberculosis, vol. 115, Mar. 2019, doi: 10.1016/j.tube.2019.01.002.
[46] R. M. Dedrick et al., “Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus,” Nature Medicine, vol. 25, no. 5, May 2019, doi: 10.1038/s41591-019-0437-z.
[47] K. S. Wetzel et al., “CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage engineering,” Scientific Reports, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-86112-6.
[48] “Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations,” Dec. 2014. Accessed: Jul. 08, 2021. [Online]. Available: http://www.jpiamr.eu/wp-content/uploads/2014/12/AMR-Review-Paper-Tackling-a-crisis-for-the-health-and-wealth-of-nations_1-2.pdf
[49] X. Huang, X. Wang, J. Zhang, N. Xia, and Q. Zhao, “Escherichia coli-derived virus-like particles in vaccine development,” npj Vaccines, vol. 2, no. 1, Dec. 2017, doi: 10.1038/s41541-017-0006-8.
[50] P. Tao, J. Zhu, M. Mahalingam, H. Batra, and V. B. Rao, “Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases,” Advanced Drug Delivery Reviews, vol. 145, May 2019, doi: 10.1016/j.addr.2018.06.025.
[51] I. Kim, J.-S. Moon, and J.-W. Oh, “Recent advances in M13 bacteriophage-based optical sensing applications,” Nano Convergence, vol. 3, no. 1, Dec. 2016, doi: 10.1186/s40580-016-0087-5.
[52] D. M. C. Leite, X. Brochet, G. Resch, Y.-A. Que, A. Neves, and C. Peña-Reyes, “Computational prediction of inter-species relationships through omics data analysis and machine learning,” BMC Bioinformatics, vol. 19, no. S14, Nov. 2018, doi: 10.1186/s12859-018-2388-7.
[53] C. Howard-Varona, K. R. Hargreaves, S. T. Abedon, and M. B. Sullivan, “Lysogeny in nature: mechanisms, impact and ecology of temperate phages,” The ISME Journal, vol. 11, no. 7, Jul. 2017, doi: 10.1038/ismej.2017.16.