References
[1] Schiro, G., Verch, G., Grimm, V., & Müller, M. (2018). Alternaria and Fusarium Fungi: Differences in Distribution and Spore Deposition in a Topographically Heterogeneous Wheat Field. Journal of Fungi,4(2), 63. doi:10.3390/jof4020063
[2] Escrivá, L., Font, G., & Manyes, L. (2015). In vivo toxicity studies of Fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology,78, 185-206. doi:10.1016/j.fct.2015.02.005
[3] Lee, H. B., Patriarca, A., & Magan, N. (2015). Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology. Mycobiology,43(3),371. doi:10.5941/ myco.2015.43.3.371
[4] Yang, X., Navi, S. S., & Pecinovsky, K. T. (2005). Evaluation of Fungicides for the Control of Cercospora Leaf
Spot, White Mold, and Brown Spot of Soybean. doi:10.31274/farmprogressreports-180814-2690
[5] Namanda, S. (2004). Fungicide application and host-resistance for potato late blight management: Benefits assessment from on-farm studies in S.W. Uganda. Crop Protection. doi:10.1016/s0261-2194(04)00079-1
[6] Aleksandrowicz-Trzcińska, M., & Grzywacz, A. (2014). The effect of fungicides used in the protection of forest tree seedlings on the growth of ectomycorrhizal fungi. Acta Mycologica,32(2), 315-322. doi:10.5586/am.1997.028
[7] O’Brien, P. A. (2017). Biological control of plant diseases. Australasian Plant Pathology,46(4), 293-304. doi:10.1007/s13313-017-0481-4
[8] Fletcher, J. (1988). Innovative approaches to plant disease control. Endeavour,12(2), 95. doi:10.1016/0160-9327(88)90113-5
[9] Herodotus, Thucydides, Adler, M. J., Rawlinson, G., & Crawley, R. (1994). The history of Herodotus. Chicago: Encyclopaedia Britannica.
[10] Ishida, T. (2018). Antibacterial mechanism of Ag ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. MOJ Toxicology,4(5). doi:10.15406/mojt.2018.04.00125
[11] Andisheh, N., & Baserisalehi, M. (2016). Antimicrobial effects of biosynthesized silver nanoparticles produced by Actinomyces spp. based on their sizes and shapes. Malaysian Journal of Microbiology. doi:10.21161/mjm.88516
[12] Rajawat, S., & Mailk, M. (2018). Silver Nanoparticles: Properties, Synthesis Techniques, Characterizations, Antibacterial and Anticancer Studies. doi:10.1115/1.860458
[13] Jo, Y., Kim, B. H., & Jung, G. (2009). Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Disease,93(10), 1037-1043. doi:10.1094/pdis-93-10-1037
[14] Min, J., Kim, K., Kim, S., Jung, J., Lamsal, K., Kim, S., . . . Lee, Y. (2009). Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi. The Plant Pathology Journal,25(4), 376-380. doi:10.5423/ppj.2009.25.4.376
[15] Gaffet, E., Tachikart, M., Kedim, O. E., & Rahouadj, R. (1996). Nanostructural materials formation by mechanical alloying: Morphologic analysis based on transmission and scanning electron microscopic observations. Materials Characterization,36(4-5), 185-190. doi:10.1016/s1044-5803(96)00047-2
[16] Sergeev, B. M., Kasaikin, V. A., Litmanovich, E. A., Sergeev, G. B., & Prusov, A. N. (1999). Cryochemical synthesis and properties of silver nanoparticle dispersions stabilised by poly(2-dimethylaminoethyl methacrylate). Mendeleev Communications,9(4), 130-131. doi:10.1070/mc1999v009n04abeh001080
[17] Biosynthesis of Silver Nanoparticles by Escherichia coli. (2013). Asian Journal of Chemistry,25(3). doi:10.14233/ajchem.2013.12805
[18] Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters,62(29), 4411-4413. doi:10.1016/j.matlet.2008.06.051
[19] Shankar, S., Ahmad, A., & Sastry, M. (2003). Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. Biotechnology Progress,19(6), 1627-1631. doi:10.1021/bp034070w
[20] Jha, A. K., Prasad, K., Prasad, K., & Kulkarni, A. (2009). Plant system: Natures nanofactory. Colloids and Surfaces B: Biointerfaces,73(2), 219-223. doi:10.1016/j.colsurfb.2009.05.018
[21] Gurunathan, S. (2015). Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria. Journal of Industrial and Engineering Chemistry,29, 217-226. doi:10.1016/j.jiec.2015.04.005
[22] Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine,5(4), 452-456. doi:10.1016/j.nano.2009.01.012
[23] Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine,3(2), 168-171. doi:10.1016/j.nano.2007.02.001
[24] Khandelwal, N., Kaur, G., Chaubey, K. K., Singh, P., Sharma, S., Tiwari, A., . . . Kumar, N. (2014). Silver nanoparticles impair Peste des petits ruminants virus replication. Virus Research,190, 1-7. doi:10.1016/j.virusres.2014.06.011
[25] Galdiero, S., Rai, M., Gade, A., Falanga, A., Incoronato, N., Russo, L., . . . Ingle, A. (2013). Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine,4303. doi:10.2147/ijn.s50070
[26] Elbeshehy, E. K., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology,6. doi:10.3389/fmicb.2015.00453
[27] Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine,5(4), 382-386. doi:10.1016/j.nano.2009.06.005
[28] Gopinath, V., & Velusamy, P. (2013). Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,106, 170-174. doi:10.1016/j.saa.2012.12.087
[29] Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., & Singh, H. B. (2014). Biofabricated Silver Nanoparticles Act as a Strong Fungicide against Bipolaris sorokiniana Causing Spot Blotch Disease in Wheat. PLoS ONE,9(5). doi:10.1371/journal.pone.0097881
[30] Reenaa, M., & Menon, A. S. (2017). Synthesis of Silver Nanoparticles from Different Citrus Fruit Peel Extracts and a Comparative Analysis on its Antibacterial Activity. International Journal of Current Microbiology and Applied Sciences,6(7), 2358-2365. doi:10.20546/ijcmas.2017.607.337
[31] Phongtongpasuk, S., & Poadang, S. (2015). Green Synthesis of Silver Nanoparticles Using Pomegranate Peel Extract. Advanced Materials Research,1131, 227-230. doi:10.4028/www.scientific.net/amr.1131.227
[32] Devi, J. S., & Bhimba, B. V. (2014). Antibacterial and Antifungal Activity of Silver Nanoparticles Synthesized using Hypnea muciformis. Biosciences Biotechnology Research Asia,11(1), 235-238. doi:10.13005/bbra/1260
[33] Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology,40(1), 53-58. doi:10.5941/myco.2012.40.1.053