References
[1] J.H. Hodgkin, R. Eibl, “Ferric ion chelation by aminophenol resins”, Reactive polymers, Ion exchangers, sorbents, Vol. 4, Issue 4, pp. 285-291, 1986.
[2] J.E. Greenleaf, A.K. SenGupta, “Carbon dioxide regeneration of ion exchange resins and fibers”, Solvent Extraction and Ion Exchange, Vol. 30, pp. 350-371, 2012.
[3] B. Monica, M.E. Alvarez, D.A. Malla, “Performance evaluation of two chelating ion-exchange sorbents for the fractionation of labile and inert metal species from aquatic media”, Anal Bioanal Chem, Vol. 378, pp. 438–446, 2004.
[4] A.A. Atia, A.M. Donia, K.Z. Elwakeel, “Selective separation of Mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups”, React. Funct. Polym., Vol. 65, Issue 3, pp. 267-275, 2005.
[5] L.K. Orazzhanova, M.G. Yashkarova, L.A. Bimendina, S.D. Kudaiburgenov, “Binary and ternary polymer–strontium complexes and the capture of radioactive strontium-90 from the polluted soil of the semipalatinsk nuclear test site”, J. of Applied Polymer Science, Vol. 87, Issue 5, pp. 759-764, 2003.
[6] M.M. Jadhav, L.J. Paliwal, N.S. Bhave, “Ion exchange properties of 2,2’-dihydroxybiphenyl-urea-formaldehyde terpolymer resins”, Desalination, Vol. 250, pp. 120-129, 2009.
[7] S.S. Butoliya, A.B. Zade, W.B. Gurnule, “Terpolymer resin VIII: Chelation ion-exchange properties of 2,4-dihydroxybenzophenone-oxamide-formaldehyde terpolymer resins”, J App Polym Sci., Vol. 113, Issue 1, pp. 1-9, 2009.
[8] P.E.P. Michael, J.M. Barbe, H.D. Juneja, L.J. Paliwal, “A novel polymer (8-HGQF): synthesis and physico-chemical studies of 8-hydroxyquinoline, guanindine, formaldehyde terpolymer”, European Polymer Journal, Vol. 43, pp. 4995-5000, 2007.
[9] B.A. Shah, A.V. Shah, P.M. Shah, “Synthesis, characterization and analytical application of a new chelating resin derived from o-substituted benzoic acid”, Iran Polym. J., Vol. 15, Issue 10, pp. 809-819, 2006.
[10] W.B. Gurnule, P.K. Rahangdale, L.J. Paliwal, “Synthesis, characterization and ion exchange properties of 4-hydroxyacetophenone, biuret and formaldehyde terpolymer resins”, React. Funct. Polym., Vol. 55, pp. 255-265, 2003.
[11] B. Shah, A. Shah, N. Patel, “Benign approach of microwave assisted synthesis of copolymeric resin with improved thermal, spectral and ion-exchange properties”, Iran Polym J., Vol. 17, Issue 1, pp. 3-17, 2008.
[12] W.B. Gurnule, P.K. Rahangdale, L.J. Paliwal, R.B. Kharat, “Chelation ion-exchange properties of copolymer derived from 2-hydroxyacetophenone, oxamide and formaldehyde”, Synth. React. Inorg. Met. Org. Chem., Vol. 33, Issue 7, pp. 1187-1205, 2003.
[13] D.H. Wade, D. Zhao, A.K. Sengupta, C. Lange, “Preparation and characterization of a new class of polymeric ligand exchangers for selective removal of trace contaminants from water”, Reactive and Functional Polymers, Vol. 60, pp. 109-120, 2004.
[14] P.K. Rahangdale, W.B. Gurnule, L.J. Paliwal, R.B. Kharat, “Ion-exchange study of 4-hydroxyacetophenone-biuret-formaldehyde terpolymer resin”, React. Funct. Polym., Vol. 55, pp. 255-265, 2003.
[15] M.V. Tarase, A.B. Zade, W.B. Gurnule, “Resin I: Synthesis, characterization and ion exchange properties of terpolymer resins derived from 2,4-Dihydroxypropiophenone, Biuret and Formaldehyde”, Journal of Applied Polymer Science, Vol. 108, Issue 2, pp. 738-746, 2008.
[16] P.P. Kalbende, A.B. Zade, “Ion-exchange studies of copolymer derived from 4,4’-biphenol”, Journal of Macromolecular Science: Part A, Taylor and Francies, Vol. 51, Issue 1, pp. 1-12, 2013.
[17] P.P. Kalbende, A.B. Zade, M.V. Tarase, “Synthesis, characterization and behavior of thermal degradation kinetics of copolymer-III derived from p-nitrophenol, 4,4’-methylene dianiline and formaldehyde”, Journal of Indian Chemical Society, Vol. 90, pp. 1-10, 2013.
[18] P.P. Kalbende, M.V. Tarase, A.B. Zade, “Preparation, Characterization and Thermal Degradation Studies of p-nitrophenol Based Copolymer”, Hindawi Publishing Corporation, Journal of Chemistry, Vol. 1, pp. 1-9, 2012.
[19] A. Vogel, Text Book of Quantitative Chemical Analysis, 5th edn.; (Longman, London) pp. 186–213, 1989.
[20] M.V. Tarase, A.B. Zade, W.B. Gurnule, “Ion Exchange Properties of Chelating Terpolymer Resin 2,4-DHPOF-II Derived from 2,4-Dihydroxypropiophenone”, Desalination and water treatment, Vol. 21, pp. 33-43, 2010.
[21] Jeffery, G. H.; Mendham, J.; Denney, R. C.; Bassett, J. Vogel’s Text Book of Quantitative Inorganic Analysis, 5th Edition, John Wiley and Sons Inc., New York 1989, 10158.
[22] M.M. Jadhao, L.J. Paliwal, N.S. Bhave, “Chelation ion exchange properties of 2,2’-dihydroxybiphenyl-urea-formaldehyde”, Indian J. Chem. (Sect A), Vol. 44, pp. 1206–1210, 2005.
[23] M.V. Tarase, A.B. Zade, W.B. Gurnule, “Resin-I Synthesis, characterization and ion exchange properties of terpolymer resins derived from 2,4-dihydroxypropiophenone-biuret and formaldehyde”, J Appl Polym Sci., Vol. 108, pp. 738-746, 2008.
[24] V.V. Hiwase, A.B. Kalambe, K.M. Khedkar, S.D. Deosarkar, “Ion exchange properties of resins derived from p-hydroxybenzaldehyde, resorcinol and formaldehyde”, E-Journal of Chemistry, Vol. 7, Issue 1, pp. 287-294, 2010.
[25] R.C. De Geiso, L.J. Donaruma, E.A. Tomic, Chelating ion exchange properties of salicylic acid-formaldehyde polymer. Anal.Chem., Vol. 34, pp. 845-847, 1962.
[26] S. Lenka, A. Parija, P.L. Nayak, “Synthetic resins: XV. Chelation ion exchange properties of 2,4-dinitrophenylhydrazone of resacetophenone-formaldehyde resin”. Polymer International, Vol. 29, Issue 2, pp. 103, 2007.
[27] P.E.P. Michael, P.S. Lingala, H.D. Juneja, L.J. Paliwal, “Synthetic, structural, and thermal degradation of a tercopolymer derived from salicylic acid, guanidine, and formaldehyde”, J App Polym Sci., Vol. 92, Issue 4, pp. 2278, 2004.
[28] W.B. Gurnule, P.K. Rahangdale, L.J. Paliwal, R.B. Kharat, “Chelation ion-exchange properties of copolymer derived from 2-hydroxyacetophenone, oxamide and formaldehyde”. Synth. React. Inorg. Met. Org. Chem., Vol. 33, Issue 7, pp. 1187-1205, 2003.
[29] M.A. Kapadia, M.M. Patel, G.P. Patel, J.D. Joshi, “Synthesis, characterization and ion-exchange study of benzophenone based resin and its polychelates with Lanthanides (III)”. International Journal of Polymeric Materials, Vol. 56, Issue 5, pp. 549–563, 2007.
[30] D. T. Masram, K. P. Kariya, N.S. Bhave, “Synthesis of resin-I: Salicylic acid, hexamethylene diamine and formaldehtde and its ion exchange properties”, E-Polym., Vol. 75, pp. 1-12, 2007.
[31] M.M. Jadhav, L.J. Paliwal, N.S. Bhave, “Ion exchange properties of 2,2’-dihydroxybiphenyl-urea-formaldehyde terpolymer resins”. Desalination, Vol. 250, pp. 120-129, 2009.
[32] F.A. Rimawi, A. Ahmad, F.I. Khalili, M. Mubarak, “Chelating properties of some phenolic formaldehyde polymers towards some lanthanide ions”, Sol Extr Ion Exch., Vol. 22, pp. 721, 2004.
[33] M.A. Riswan, R.S. Azarudeen, M. Karunakaran, A.R. Burkanudeen, “Synthesis, Characterization, Metal Ion Binding Capacities and Applications of a Terpolymer Resin of Anthranilic acid/Salicylic acid/Formaldehyde”. Iranian Poly. J., Vol. 19, Issue 8, pp. 635-646, 2010.
[34] S.A. Patel, B.S. Shah, R.M. Patel, P.M. Patel, “Synthesis, Characterization and Ionexchange Properties of Acrylic Copolymers Derived from 8-Quinolinyl Methacrylate”. Iranian Polymer Journal, Vol. 13, Issue 6, pp. 445-453, 2004.
[35] M.V. Tarase, A.B. Zade, W.B. Gurnule, “Resin I: Synthesis, Characterization and Ion Exchange Properties of Terpolymer Resins Derived from 2,4-Dihydroxypropiophenone, Biuret and Formaldehyde”. Journal of Applied Polymer Science, Vol. 108, Issue 2, pp. 738-746, 2008.
[36] V.V. Hiwase, A.B. Kalambe, K.M. Khedkar, S.D. Deosarkar, “Ion exchange properties of resins derived from p-hydroxybenzaldehyde, resorcinol and formaldehyde”, E-Journal of Chemistry, Vol. 7, Issue 1, pp. 287-294, 2010.
[37] R.C. De Geiso, L.J. Donaruma, E.A. Tomic, “Chelating ion exchange properties of salicylic acid-formaldehyde polymer”. Anal.Chem., Vol. 34, pp. 845-847, 1962.
[38] R.N. Singru, A.B. Zade, W.B. Gurnule, “Synthesis, Characterization and Thermal Degradation Studies of Co-polymer Resins Derived from p-Cresol, Melamine and Formaldehyde”, Journal of Applied polymer science, Vol. 109, Issue 2, pp. 859-868, 2008.
[39] A. Demirbas, E. Pehlivan, F. Gode, T. Altun, G. Arslan, “Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin”, J. Colloid Interface Sci., Vol. 282, pp. 20-25, 2005.
[40] I.S. Lima, C.A. Airoldi, Thermodynamic investigation on chitosan–divalent cation interactions, Thermochimica Acta, Vol. 421, pp. 133-139, 2004.
[41] A. Baraka, P.J. Hall, M.J. Heslop, “Melamine–formaldehyde–NTA chelating gel resin: Synthesis, characterization and application for copper (II) ion removal from synthetic wastewater”. J. Hazardous Material, Vol. 140, pp. 86-94, 2007.
[42] G. Karthikeyan, K. Anbalagan, N.M. Andal, “Adsorption dynamics and equilibrium studies of Zn(II) onto chitosan”, J. Chem. Sci., Vol. 116, pp. 119-127, 2004.
[43] H.H. Prasad, K.M. Popat, P.S. Anand, “Synthesis of cross linked methacrylic acid-coethyleneglycol dimethacrylate polymers for the removal of copper and nickel from water”. Indian Journal of Chemical Technology, Vol. 9, pp. 385-393, 2002.
[44] J.U.K. Oubagaranadin, Z.V.P. Murthy, “Adsorption of divalent lead on a montmorillonite−illite type of clay”. Ind Eng Chem Res., Vol. 48, pp. 10627-10636, 2009.
[45] I. Langmuir, “The constitution and fundamental properties of solids and liquids. Part I. Solids”, J. Amer. Chem. Soc., Vol. 38, pp. 2221-2295, 1916.
[46] H.M.F. Freundlich, “Uber die adsorption in losungen Zeitschrift fur Physikalische” Chemie-Leipzig, Vol. 57, pp. 385–470, 1906.
[47] T. Vaughan, C.W. Seo, W.E. Marshal, “Removal of selected metal ions from aqueous solution using modified corn cobs”. Bioresour. Technol., Vol. 78, pp. 133-139, 2001.
[48] I.B. Stephan, N. Sulochana, “Basic dye adsorption on a low cost carbonaceous sorbent- Kinetic and equilibrium studies”, Indian Journal of Chem. Technol., Vol. 9, pp. 201-205, 2002.
[49] G.N. Kousalya, M.R. Gandhi, S. Meenakshi, “Sorption of chromium (VI) using modified forms of chitosan beads”, International Journal of Biological Macromolecules, Vol. 47, pp. 308–315, 2010.
[50] V. Srivastava, C.H. Weng, V.K. Singh, Y.C. Sharma, Adsorption of nickel ions from aqueous solutions by nano alumina: Kinetic, mass transfer, and equilibrium studies. J Chem Eng Data, Vol. 56, pp. 1414-1422, 2011.
[51] A.S. Ozcan, B. Erdem, A. Ozcan, “Adsorption of Acid Blue 193 from Aqueous Solutions onto BTMA-Bentonite”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 266, pp. 73-81, 2005.
[52] L.M. Harwood, F.W. Lewis, M.J. Hudson, J. John, P. Distler, “The Separation of Americium(III) from Europium(III) by Two New 6,6`-Bistriazinyl-2,2`-Bipyridines in Different Diluents”. Solvent Extraction and Ion Exchange, Vol. 29, pp. 551–576, 2011.
[53] R.N. Singru, W.B. Gurnule, V.A. Khati, A.B. Zade, J.R. Dontulwar, “Eco-friendly application of p-cresol-melamine-formaldehyde polymer resin as an ion-exchanger and its electrical and thermal study”. Desalination, Vol. 263, Issue 1-3, pp. 200-210, 2010.
[54] P.P. Kalbende, A.B. Zade, “Sorption studies of terpolymers based on p-nitrophenol, triethylenetetramine and formaldehyde”. Separation Science and Technology, Taylor and Francies, Vol. 50, pp. 965–974, 2015.
[55] A. V. Pandya, “Synthesis, Conducting Properties and Applications of Poly Ethyl Aniline”, International Journal of Scientific Research in Chemical Sciences, Vol. 3, Issue 5, 2016.