References
[1] K. Oh, T. Cao, T. Li, and H. Cheng, “Study on Application of Phytoremediation Technology in Management and Remediation of Contaminated Soils” Journal of Clean Energy Technologies, Vol. 2, Issue 3, pp. 216-220, 2014.
[2] F. Li, Z. Fan, P. Xiao, K. Oh, X. Ma, W. Hou, “Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China” Environ” Geol. Vol. 57, pp. 1815-1823, 2009.
[3] W. Sun, S. Zhang, C. Su, “Impact of Biochar on the Bioremediation and Phytoremediation of Heavy Metalloids in Soil, Advances in Bioremediation and Phytoremediation” Naofumi Shiomi, IntechOpen, 2018.
[4] http://www.unep.or.jp/ietc/publications/freshwater/fms2/1.asp
[5] S. G. Moosavi, M. J. Seghatoleslami, “Phytoremediation: A review” Advance in Agriculture and Biology, Vol. 1, Issue 1, pp. 5-11, 2013.
[6] H. S. Helmisaari, M. Salemaa, J. Derome, O. Kiikkila, C. Uhlig, T. M. Nieminen, “Remediation of heavy metal-contaminated forest soil using recycled organic matter and native woody plants” Journal of Environ. Qual. Vol. 36, pp. 1145–1153, 2007.
[7] M. Vyslouzilova, P. Tlustos, J. Szakova, D. Pavlikova, “As, Cd, Pb and Zn uptake by Salix spp. Clones grown in soils enriched by high loads of these elements” Plant Soil Environ. Vol. 49, pp. 191–196, 2003.
[8] S. D. Cunningham, D. W. Ow, “Promises and prospects of phytoremediation” Plant physiology, Vol. 110, pp. 715 – 719, 1996.
[9] X. J. Wang, F. Y. Li, M. Okazaki, M. Sugisaki, “Phytoremediation of contaminated soil” Annual Report CESS, Vol. 3, pp. 114-123, 2003.
[10] B. D. Ensley, “Rationale for the use of phytoremediation of toxic metals using plants to clean-up the environment” John Wiley Publishers: New York, 2000.
[11] M. Ghosh, S. P. Singh, “A review on phytoremediation of heavy metals and utilization of it`s by products” Applied Ecology and Environmental Research, Vol. 3, Issue 1, pp. 1-18, 2005.
[12] A. C. Lewis, “Assessment and comparison of two phytoremediation systems treating slow-moving groundwater plumes of TCE” Master thesis. Ohio University pp.158, 2006.
[13] M. Vidali, “Bioremediation: An overview” Pure and Applied Chemistry, Vol. 73, Issue 7, pp. 1163-1172, 2001.
[14] M. N. V. Prasad, H. M. D. Freitas, “Metal hyper accumulation in Plants: Biodiversity prospecting for phytoremediation Technology” Electronic Journal of Biotechnology, Vol. 6, pp. 285-321, 2003.
[15] K. Usman, M. A. Al-Ghouti, M. H. Abu-Dieyeh, “Phytoremediation: Halophytes as Promising Heavy Metal Hyperaccumulators” Heavy Metals, Hosam El-Din M. Saleh and Refaat F. Aglan, IntechOpen, 2018.
[16] P. Mahajan, J. Kaushal, “Role of Phytoremediation in Reducing Cadmium Toxicity in Soil and Water” Journal of Toxicology, Vol. 2018, pp. 16, 2018.
[17] P. K. Padmavathiamma, L. Y. Li, “Phytoremediation technology: hyper-accumulation metals in plants” Water, Air, and Soil Pollution, Vol. 184, Issue 1-4, pp. 105–126, 2007.
[18] H. Oliveira “Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity” Journal of Botany, 2012. http://dx.doi.org/10.1155/2012/375843
[19] K. Al-Akeel, “The Pollution of Water by Trace Elements Research Trends, Advances in Bioremediation and Phytoremediation” Naofumi Shiomi, IntechOpen, 2017.
[20] M. Baunthiyal, V. Sharma, “Phytoremediation of fluoride contaminated water and soil: A search for fluoride hyperaccumulators” Journal of Agricultural Technology Vol. 8, Issue 6, pp. 1965-1978, 2012.
[21] R. A. Fathi, D. L. Godbold, H. S. Al-Salih, D. Jones, “Potential of Phytoremediation to clean up uranium-contaminated soil with Acacia species” Journal of Environment and Earth Science, Vol. 4, Issue 4, pp. 81-91, 2014.
[22] U. Waziri, Abdullahi, A. A. Audu, and Kalimullah, “Phytoremediation Potentials of Selected Plants in Industrially Contaminated Soils” International Journal of Environmental Science and Development, Vol. 7, Issue 10, 2016.
[23] E. Ighovie, E. Ikechukwu, “Phytoremediation of Crude Oil Contaminated Soil with Axonopus compressus in the Niger Delta Region of Nigeria” Natural Resources, Vol. 5, Issue 2, pp. 59-67, 2014.
[24] S. N. B. Ukoh, M. O. Akinola, K. L. Njoku, “Comparative Study on the Remediation Potential of Panicum Maximum and Axonopus Compressus in Zinc (Zn) Contaminated Soil” Pollution, Vol. 5, Issue 4, pp. 687-699, 2019.
[25] J. M. Lim, A. L. Salido, D. J. Butcher, “Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics” Microchemical Journal, Vol. 76, Issues 1–2, pp. 3-9, 2004.
[26] S. Anamika, S. Eapen, M. H. Fulekar, “Phytoremediation of Cadmium, Lead and Zinc by Brassica juncea L. Czern and Coss” Journal of Applied Biosciences, Vol. 13, pp. 726 – 736, 2009.
[27] M. Szczygłowska, A. Piekarska, P. Konieczka, J. Namieśnik, “Use of Brassica Plants in the Phytoremediation and Biofumigation Processes” International Journal of Molecular Sciences, Vol. 12, Issue 11 7760-7771, 2011.
[28] A. Singh, M. H. Fulekar, “Phytoremediation of Heavy Metals by Brassica juncea in Aquatic and Terrestrial Environment. In: Anjum N., Ahmad I., Pereira M., Duarte A., Umar S., Khan N. (eds) The Plant Family Brassicaceae” Environmental Pollution, Vol 21. Springer, Dordrecht, 2012.
[29] S. Awais, M. Abdullah, R. Sarfraz, M. A. Altaf, S. Batool, “A comprehensive review on phytoremediation of cadmium (Cd) by mustard (Brassica juncea L.) and sunflower (Helianthus annuus L.)” Journal of Biodiversity and Environmental Sciences, Vol. 10, Issue 3, pp. 88-98, 2017.
[30] N. Makombe, R. D. Gwisai, “Soil Remediation Practices for Hydrocarbon and Heavy Metal Reclamation in Mining Polluted Soils” The Scientific World Journal, Vol. 2018, pp. 7, 2018.
[31] S. Maletic, B. Dalmacija, R. Srdan “Petroleum Hydrocarbons Biodegradability in Soil-Implications for Bioremediation” 2013.
[32] M. Ghosh, S. P. Singh, “Comparative uptake and phytoextraction study of soil induced chromium by accumulator and high biomass weed species” Applied Ecology and Environmental Research, Vol. 3, Issue 2, pp. 67-79, 2005.
[33] S. Nayana, S. N. Malode, “Phytoremediation potential of cassia tora (l.) roxb. to remove heavy metals from waste soil collect from sukali compost and landfill depot, Amravati (M.S)” Global Journal of Bioscience and Biotechnology, Vol. 1, Issue 1, pp. 104-109, 2012.
[34] H. Badamasi, A. K. Suleiman, T. M. Tahir, “Phytoremediation of Lead (Pb) using Cassia Tora (L) Plants” International Journal of Scientific Research in Science and Technology, Vol. 3, Issue 7, pp. 105-109, 2017.
[35] H. H. Siringoringo, “The role of some urban forest plants in adsorbing lead particulates” Bull. Penelitian Hutan, Vol. 622, pp. 1-16, 2010.
[36] A. K. Gupta, S. Singh, “Decontamination and/or regeneration of fly ash dyke through naturally growing plant” Journal of Hazardous Materials, Vol. 153: pp. 1078-1087, 2008.
[37] D. B. Ramanlal, R. N. Kumar, N. Kumar, J. I, Mansi, N. Banker, R. Thakkar, “Screening and Assessment of Heavy Metal Accumulation Potential of Amaranthus Spinosus and Cassia Tora In and Around the Vicinity of Anand, Gujarat” International Journal for Research in Applied Science and Engineering Technology, Vol. 5, Issue IX, pp. 763-767, 2017.
[38] Y. Suryani, T. Cahyanto, T. Sudjarwo, D. V. Panjaitan, E. Paujiah, M. Jaenudin, “Chromium Phytoremediation of Tannery Wastewater using Ceratophyllum demersum” Biosaintifika Journal of Biology and Biology Education, Vol. 9, Issue 2, pp. 233-239, 2017.
[39] C. O. Awalla, “Phytoremediation of sewage sludge in soils contaminated with heavy metals” Global Journal of Environmental Sciences, Vol. 12, Issue 1, pp. 13-19, 2013.
[40] U. Abdullahi, A. A. Audu, Kalimullah, L. Shuaibu, “Phytoremediation of Contaminated Soils from Challawa Industrial Estate, Kano-Nigeria” Science Journal of Analytical Chemistry, Vol. 4, Issue 5, pp. 59-65, 2016.
[41] A. M. Ramadan, J. Shamshuddin, C. I. Fauziah, A. Arifin, Q. A. Panhwar, “Phytoremediation of Copper and Zinc in Sewage Sludge Amended Soils Using Jatropha curcas and Hibiscus cannabinus” Journal of Chemical Society of Pakistan, Vol. 38, Issue 6, pp. 1230-1243, 2016.
[42] E. B. Ochekwu, B. Madagwa, “Phytoremediation potentials of water Hyacinth. Eichhornia Crassipes (mart.) Solms in crude oil polluted water” Journal of Applied Science and Environmental Management, Vol. 17, Issue 4, pp. 503-507, 2013.
[43] K. A. Tan, N. Morad, J. Q. Ooi “Phytoremediation of Methylene Blue and Methyl Orange Using Eichhornia crassipes” International Journal of Environmental Science and Development, Vol. 7, Issue 10, 724-728, 2016.
[44] N. Sewalem, S. Elfeky, F. El- Shintinawy, “Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant” Journal of Stress Physiology and Biochemistry, Vol. 10, Issue 1, pp. 123-134, 2014.
[45] L. F. Martins, R. S. Peixoto, “Biodegradation of petroleum hydrocarbons in hypersaline environments” Brazillian Journal of Microbiology, pp. 865-872, 2012.
[46] H. W. Mun, A. L. Hoe, L. D. Koo, “Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings” Journal of Environmental Sciences, Vol. 20, pp. 1341-1347, 2008.
[47] S. H. Bokhari, I. Ahmad, M. M. Ul-Hassan, A. Mohammad, “Phytoremediation potential of Lemna minor L. for heavy metals” International Journal of Phytoremediation, 2016.
[48] M. K. Daud, S. Ali, Z. Abbas, “Potential of Duckweed (Lemna minor) for the Phytoremediation of Landfill Leachate” Journal of Chemistry, Vol. 2018, pp. 9, 2018.
[49] O. A. S. Usman, A. Nasiru, “Phytoremediation of Trace Metals in Shadawanka Stream of Bauchi Metropolis, Nigeria” Universal Journal of Environmental Research and Technology, Vol. 1, Issue 2, 176-181, 2011.
[50] S. O. Olajuyigbe, D. A. Aruwajoye, “Phytoremediation of diesel oil contaminated soil using seedlings of two tropical hardwood species (Khaya senegalensis and Terminalia superba)” International Journal of Scientific and Engineering Research, Volume 5, Issue 6, pp. 1067-1078, 2014.
[51] K. Bansah, W. Addo, “Phytoremediation Potential of Plants Grown on Reclaimed Spoil Lands” Ghana Mining Journal, Vol. 16, Issue 1, 2016.
[52] A. A. Mukhtar, I. L. Abdullahi, “Heavy metals phytoremediation using Typha domingensis Flourishing in an industrial effluent drainage in Kano, Nigeria” Bayero Journal of Pure and Applied Sciences, Vol. 1, Issue 1, pp. 277-280, 2017.
[53] I. A. Al-Baldawi, S. S. A. Rozaimah, F. Suja, N. Anuar, M. Idris “Preliminary Test of Hydrocarbon Exposure on Azolla pinnata in Phytoremediation Process” International Conference on Environment, Energy and Biotechnology, IACSIT Press, Singapore, Vol. 33, pp. 244-247, 2012.
[54] M. Afrousheh, M. Shoor, A. Tehranifar, V. R. Safari “Phytoremediation Potential of Copper Contaminated Soils in Calendula officinalis and Effect of Salicylic Acid on the Growth and Copper Toxicity” International Letters of Chemistry, Physics and Astronomy, Vol. 50, pp. 159-168, 2015.
[55] P. J. Khankhane, A. Tabassum, A. Patel, “Cadmium tolerance and its enhanced accumulation potential of Arundo donax by EDTA” Journal of Environmental Biology, Vol. 38, Issue 2, pp. 327–334, 2017.