References
[1] Hu, B., Guo, H., Zhou, P., & Shi, Z. L.” Characteristics of SARS-CoV-2 and COVID-19”, Nature reviews. Microbiology, Vol. 19, Issue.3, pp.141–154. 2021. https://doi.org/10.1038/s41579-020-00459-7.
[2] Hatmal, M. M., Alshaer, W., Al-Hatamleh, M., Hatmal, M., Smadi, O., Taha, M. O., Oweida, A. J., Boer, J. C., Mohamud, R., & Plebanski, M. “Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2”, Cells, Vol. 9, Issue.12, pp.2638, 2020. https://doi.org/10.3390/cells9122638
[3] Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanov, J., Neufeldt, C. J., Cerikan, B., Lu, J. M., Peukes, J., Xiong, X., Kräusslich, H. G., Scheres, S., Bartenschlager, R., & Briggs, J. “Structures and distributions of SARS-CoV-2 spike proteins on intact virions”, Nature, Vol.588, Issue.7838, pp.498–502, 2020. https://doi.org/10.1038/s41586-020-2665-2.
[4] V`kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. “Coronavirus biology and replication: implications for SARS-CoV-2”,Nature reviews. Microbiology, Vol. 19, Issue.3, 155–170, 2021.https://doi.org/10.1038/s41579-020-00468-6.
[5] Malik Y. A. “Properties of Coronavirus and SARS-CoV-2”, The Malaysian journal of pathology, Vol.42, Issue. 1, pp.3–11, 2020.
[6] Xia X. “ Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of Vaccine Design”,Viruses, Vol. 13, Issue.1, pp.109, 2021. https://doi.org/10.3390/v13010109.
[7] Wang, M. Y., Zhao, R., Gao, L. J., Gao, X. F., Wang, D. P., & Cao, J. M. “SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development”, Frontiers in cellular and infection microbiology, Vol.10, pp.587269. 2020. https://doi.org/10.3389/fcimb.2020.587269.
[8] Kinobe, R. T., & Owens, L. “A systematic review of experimental evidence for antiviral effects of ivermectin and an in silico analysis of ivermectin`s possible mode of action against SARS-CoV-2”, Fundamental & clinical pharmacology, Vol. 35, Issue.2, pp.260–276, 2021.https://doi.org/10.1111/fcp.12644.
[9] Junior, A. G., Tolouei, S., Dos Reis Lívero, F. A., Gasparotto, F., Boeing, T., & de Souza, P. “Natural Agents Modulating ACE-2: A Review of Compounds with Potential against SARS-CoV-2 Infections, Current pharmaceutical design, Vol.27, Issue.13, pp. 1588–1596, 2021. https://doi.org/10.2174/1381612827666210114150607
[10] Artese, A., Svicher, V., Costa, G., Salpini, R., Di Maio, V. C., Alkhatib, M., Ambrosio, F. A., Santoro, M. M., Assaraf, Y. G., Alcaro, S., & Ceccherini-Silberstein, F. “Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy,Vol. 53, pp.100721. 2020. https://doi.org/10.1016/j.drup.2020.100721.
[11] Meyer, A., & Imming, P. “Benzylisoquinoline alkaloids from the papaveraceae: the heritage of Johannes Gadamer (1867-1928)” Journal of natural products, Vol. 74, Issue.11, pp. 2482–2487. https://doi.org/10.1021/np2005049
[12] Weber, C., & Opatz, T. “Bisbenzylisoquinoline Alkaloids. The Alkaloids,Chemistry and biology, Vol. 81, pp.1–114, 2019. https://doi.org/10.1016/bs.alkal.2018.07.001
[13] He, C. L., Huang, L. Y., Wang, K., Gu, C. J., Hu, J., Zhang, G. J., Xu, W., Xie, Y. H., Tang, N., & Huang, A. L. “Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products”, Signal transduction and targeted therapy, Vol.6,Issue.1, pp.131, 2021. https://doi.org/10.1038/s41392-021-00531-5
[14] Narayana, K. R., Reddy, M. S., Chaluvadi, M. R., & Krishna, D. R."Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential." Indian journal of pharmacology Vol. 33,Issue.1 pp. 2-16, 2001.
[15] Batool, F., Mughal, E. U., Zia, K., Sadiq, A., Naeem, N., Javid, A., Ul-Haq, Z., & Saeed, M. “Synthetic flavonoids as potential antiviral agents against SARS-CoV-2 main protease”,Journal of biomolecular structure & dynamics, pp.1–12, 2020. https://doi.org/10.1080/07391102.2020.1850359
[16] Gogoi, N., Chowdhury, P., Goswami, A. K., Das, A., Chetia, D., & Gogoi, B. “Computational guided identification of a citrus flavonoid as potential inhibitor of SARS-CoV-2 main protease”, Molecular diversity, Vol.25, Issue.3, pp.1745–1759, 2021. https://doi.org/10.1007/s11030-020-10150-x.
[17] Trott, O., & Olson, A. J. “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, Journal of computational chemistry, Vol.31, Issue.2, ,pp. 455–461, 2010. https://doi.org/10.1002/jcc.21334.
[18] Dallakyan, S., & Olson, A. J. “ Small-molecule library screening by docking with PyRx”, Methods in molecular biology (Clifton, N.J.), Vol.1263, pp.243–250, 2015. https://doi.org/10.1007/978-1-4939-2269-7_19.
[19] Banerjee, R., Perera, L., & Tillekeratne, L. “Potential SARS-CoV-2 main protease inhibitors”,Drug discovery today, Vol. 26, Issue.3,pp. 804–816, 2021.https://doi.org/10.1016/j.drudis.2020.12.005.
[20] Ullrich, S., & Nitsche, C. “The SARS-CoV-2 main protease as drug target”, Bioorganic & medicinal chemistry letters, Vol.30, Issue.17, pp.127377, 2020. https://doi.org/10.1016/j.bmcl.2020.127377.
[21] Wang, Y. C., Yang, W. H., Yang, C. S., Hou, M. H., Tsai, C. L., Chou, Y. Z., Hung, M. C., & Chen, Y. “ Structural basis of SARS-CoV-2 main protease inhibition by a broad-spectrum anti-coronaviral drug,” American journal of cancer research, Vol.10, Issue.8, pp. 2535–2545, 2020.
[22] Coelho, C., Gallo, G., Campos, C. B., Hardy, L., & Würtele, M. Biochemical screening for SARS-CoV-2 main protease inhibitors. PloS one, Vol. 15, Issue.10, pp.e0240079, 2020. https://doi.org/10.1371/journal.pone.0240079.
[23] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility”, Journal of computational chemistry, Vol. 30,Issue.6,pp. 2785–2791, 2009. https://doi.org/10.1002/jcc.21256.
[24] Artemova, S., Jaillet, L., & Redon, S. “Automatic molecular structure perception for the universal force field”, Journal of computational chemistry, Vol. 37, Issue.13, pp.1191–1205, 2016. https://doi.org/10.1002/jcc.24309.
[25] Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. “UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry, Vol. 25, Issue.13, pp.1605–1612, 2004. https://doi.org/10.1002/jcc.20084.
[26] Kaplan, W., & Littlejohn, T. G. “Swiss-PDB Viewer (Deep View). Briefings in bioinformatics, Vol.2, Issue.2,pp. 195–197, 2001. https://doi.org/10.1093/bib/2.2.195.
[27] Kemmish, H., Fasnacht, M., & Yan, L. “Fully automated antibody structure prediction using BIOVIA tools: Validation study”, PloS one, Vol. 12, Issue.5, pp.e0177923, 2017.