References
[1] P. Ranjan, P.R. Khan, "Wavelet approximated texture data watershed transform (WATDWT) segmentation of Bio-Medical Images", International Journal of Computer Sciences and Engineering, Vol.5, Issue.1, pp.26-31, 2017.
[2] P. Ranjan, P.R. Khan, "Review of improved A.I. based Image Segmentation for medical diagnosis applications", International Journal of Computer Sciences and Engineering, Vol.4, Issue.11, pp.75-81, 2016.
[3] J. Rahebi, Z. Elmi, A. Farzam, K. Shayan, "Digital image edge detection using an ant colony optimization based on genetic algorithm”, 2010 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, pp.145-149, 2010.
[4] Karanbir singh and Ashima Kalra, "Improving MRI Segmentation by Fuzzy C Mean Clustering Algorithm Using BBHE Techniques", International Journal of Computer Sciences and Engineering, Vol.03, Issue.05, pp-143-147, 2015.
[5] A. Halder, A. Dasgupta, S. Ghosh, "Image segmentation using rough-fuzzy K-medoid algorithm", 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS), Kolkata, pp.105-108, 2012.
[6] H. T. T. Binh, M. D. Loi and N. T. Thuy, "Improving Image Segmentation Using Genetic Algorithm", 11th International Conference on Machine Learning and Applications, Boca Raton, pp.18-23, 2012.
[7] J. Bezdek. L. Hall. and L. Clarke, “Review of MR image segmentation using pattern recognition”, Medical Physics, vol. 20, pp.1033–48, 1993.
[8] J. K. Udupa, L. Wei, S. Samarasekera, Y. Miki, M.A. van Buchem, R.I. Grossman, "Multiple sclerosis lesion quantification using fuzzy-connectedness principles", IEEE Transactions on Medical Imaging. vol. 16, pp. 598-609, 1997.
[9] D.L. Pham, “Unsupervised Tissue Classification in Medical Images using Edge-Adaptive Clustering”, Proceedings of the 25th Annual International Conference of the IEEE EMBS. Cancun. Mexico, pp.17-21. 2003.
[10] L. Jiang, W. Yang, “A Modified Fuzzy C-Means Algorithm for Segmentation of Magnetic Resonance Images”, Proc. VIIth Digital Image Computing: Techniques and Applications, Sydney, pp.10-12, 2003.
[11] D.L. Pham, J.l. Prince, “Adaptive fuzzy segmentation of magnetic resonance images”, IEEE Transaction in Medical Imaging, Vol. 18. pp. 737–752, 1999.
[12] C. Xu, D.L Pham, J.L. Prince, “Finding the brain cortex using fuzzy segmentation. isosurfaces. and deformable surfaces”,International Conference on Inform. Processing in Medical Imaging, UK, pp. 399-404, 1997.
[13] S.R. Kannan, “Segmentation of MRI Using New Unsupervised Fuzzy C Mean Algorithm”, ICGST-GVIP Journal. Vol. 5, No.2, 2005.
[14] S. Alizadeh, M. Ghazanfari, M. Fathian, “Using Data Mining for Learning and Clustering FCM”, International Journal of Computational Intelligence. Vol. 4, No. 2, 2008.
[15] A. Wee, C. Liew, and H. Yan, “Current Methods in the Automatic Tissue Segmentation of 3D Magnetic Resonance Brain Images”, Current Medical Imaging Reviews, Vol. 2, No. 1, pp. 1-13, 2006.
[16] M.W. Hansen and W.E. Higgins, “Relaxation Methods for Supervised Image Segmentation”, IEEE Trans. on Pattern Analysis and Machine Intelligence. Vol. 19, No. 9, 1997.
[17] M.N. Ahmed and A.A. Farag, “Two stages Neural Network for Medical Volume Segmentation”, Pattern Recognition Letters, Vol.18, Issues11, pp.1143–1151, 1997.
[18] L.O. Hall, A.M. Bensaid, L.P. Clarke, R.P. Velthuizen, M.S. Silbger, J.C. Bezdek, “A Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting Magnetic Resonance Images of the Brain”, IEEE Transactions on Neural Networks. Vol. 3, No.5, pp. 672-681, 1992.
[19] K.S. Chuang, H.L, Tzeng, S. Chen, J. Wu, T.J. Chen, “Fuzzy C-Means Clustering with Spatial Information for Image Segmentation”, Computerized Medical Imaging and Graphics”, Vol. 30, pp. 9–1, 2006.
[20] Y. Yang, S. Huang, “Image Segmentation By Fuzzy C- Means Clustering Algorithm With A Novel Penalty Term”,Computing and Informatics, vol. 26, pp. 17-31, 2007.
[21] J.C. Dunn, “A Fuzzy Relative of the ISODATA Process and its Use in Detection Compact Well Separated Clusters”, Journal of Cybernetics, Vol. 3, pp. 32-57, 1974.
[22] J.C. Bezdec, “Pattern Recognition with Fuzzy Objective Function Algorithms”, Plenum Press, New York, pp.15-82, 1981.
[23] Alan Wee-Chung, Liew and Hong Yan, (2006), “Current Methods in the Automatic Tissue Segmentation of 3D Magnetic Resonance Brain Images”, Current Medical Imaging Reviews, Vol. 2, No. 1, pp. 1-13.
[24] X. Zhang, L. Yin, J.F. Cohn , S. Canavan , M. Reale , A. Horowitz , P. Liu, J.M. Girard, “BP4D-Spontaneous: a high-resolution spontaneous 3D dynamic facial expression database”, Image and Vision Computing, Vol.32, Issue.10, pp. 692–706, 2014.
[25] H. Liu, L. Li, C. Wu, “Color Image Segmentation Algorithms based on Granular Computing Clustering”, International Journal of Signal Processing, Image Processing and Pattern Recognition Vol.7, Issue.2, pp.155-168, 2014.
[26] H. Liang, A. Lucian, R. Lange , C.S. Cheung, B. Su, “Remote spectral imaging with simultaneous extraction of 3D topography for historical wall paintings”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol.95, pp.13-22, 2014.
[27] A. Roebroeck , K. Uludağ, “General overview on the merits of multimodal neuroimaging data fusion”, Neuro Image, Vol.102, Issue.1, pp.3–10, 2014.
[28] C. Bhuvaneswari , P. Aruna , D. Loganathan, “A new fusion model for classification of the lung diseases using genetic algorithm”, Egyptian Informatics Journal, Vol.15, Issue.2, pp.69–77, 2014.
[29] B. Kaur, P. Kaur, "A Comparative Study on Image Segmentation Techniques", International Journal of Computer Sciences and Engineering, Vol.3, Issue.12, pp.50-56, 2015.
[30] B. J. Zwaag, K. Slump, and L. Spaanenburg, “Analysis of neural networks for edge detection”, 13th Workshop on Circuits, Systems and Signal Processing, Netherlands, pp. 580-586, 2002.
[31] I. Irum, M. Raza, M. Sharif, “Morphological techniques for medical images: A review”,Research Journal of Applied Sciences, Engineering and Technology, Vol.4, Issue.17, pp.2948-2962, 2012.