References
[1] B. B. Aggarwal, C. Sundaram, N. Malani, H. Ichikawa, "Curcumin: the Indian solid gold," The molecular targets and therapeutic uses of curcumin in health and disease, Vol.4, no.6, pp.807-818, 2007.
[2] P. Anand, A. B. Kunnumakkara, R. A. Newman, B. B. Aggarwal, "Bioavailability of curcumin: problems and promises," Molecular pharmaceutics, Vol.4, no.6, pp.807-818, 2007.
[3] O. C. Farokhzad, R. Langer, "Impact of nanotechnology on drug delivery," ACS nano, Vol.3, no.1, pp.16-20, 2009.
[4] P. Anand, H. B. Nair, B. Sung, A. B. Kunnumakkara, V. R. Yadav, R. R. Tekmal, B. B. Aggarwal, "Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo," Biochemical pharmacology, Vol.79, no.3, pp.330-338, 2010.
[5] S. Bisht, M. Mizuma, G. Feldmann, N. A. Ottenhof, S. M. Hong, D. Pramanik, A. Maitra, "Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer," Molecular cancer therapeutics, Vol.8, no.3, pp.744-754, 2009.
[6] M. M. Yallapu, M. Jaggi, S. C. Chauhan, "Curcumin nanoformulations: a future nanomedicine for cancer," Drug discovery today, Vol.17, no.1-2, pp.71-80, 2012.
[7] G. Cevc, G. Blume, "Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force," Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol.1104, no.1, pp.226-232, 1992.
[8] P. Verma, K. Pathak, D. Pathak, "Aerodynamic assessment of celecoxib-loaded nanostructured lipid carriers produced by different methods employing dry powder inhaler," AAPS PharmSciTech, Vol.11, no.4, pp.1332-1344, 2010.
[9] E. Touitou, B. Godin, Y. K. Karl, "Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties," Journal of Controlled Release, Vol.113, no.3, pp.212-218, 2006.
[10] G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, P. S. Srinivas, "Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers," Planta medica, Vol.64, no.4, pp.353-356, 1998.
[11] J. Shaikh, D. D. Ankola, V. Beniwal, D. Singh, M. N. Kumar, "Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer," European journal of pharmaceutical sciences, Vol.37, no.3-4, pp.223-230, 2009.
[12] H. Hu, X. Yang, Y. Qin, Y. Zhu, X. Wang, "The role of piperine in increasing the bioavailability of nutrients and bioactive compounds," Molecular Nutrition, pp.173-183, Springer, 2015.
[13] Patil, V. H. Goud, "An updated review on therapeutic potential of piperine combined with other bioactive components," Fitoterapia, Vol.134, pp.76-87, 2019.
[14] Y. Wang, J. Chen, J. Irudayaraj, Y. Shen, "A pH-triggered, fast-responding DNA hydrogel," Angewandte Chemie International Edition, Vol.57, no. 21, pp.6230-6234, 2018.
[15] Sahu, N. Kasoju, U. Bora, P. Goswami, "Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells," Acta Biomaterialia, Vol.4, no. 6, pp.1752-1761, 2008.
[16] Xiao, L. Ma, D. Merlin, K. Nan, "The promising role of nanocarriers in enhancing the bioavailability and therapeutic efficacy of ellagic acid," International Journal of Pharmaceutics, Vol.570, pp.118642, 2019.
[17] T. M. Allen, P. R. Cullis, "Drug delivery systems: entering the mainstream," International Journal of Scientific Research in Multidisciplinary Science, Vol.303, no.5665, pp.1818-1822, 2004.
[18] F. Kratz, "Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles," Journal of Controlled Release, Vol. 132, no.3, pp.171-183, 2008.
[19] Q. He, J. Shi, "Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility," Journal of Materials Chemistry, Vol. 20, no. 40, pp. 7599-7602, 2010.
[20] U. Bulbake, S. Doppalapudi, N. Kommineni, W. Khan, "Liposomal formulations in clinical use: an updated review," Pharmaceutics, Vol. 9, no. 2, pp. 12, 2017.
[21] S. Mura, J. Nicolas, P. Couvreur, "Stimuli-responsive nanocarriers for drug delivery," Nature materials, Vol.12, no.11, pp. 991-1003, 2013.
[22] Xiao, B., Ma, L., Merlin, D., & Nan, K. (2019). The promising role of nanocarriers in enhancing the bioavailability and therapeutic efficacy of ellagic acid. International Journal of Pharmaceutics, Vol.570, pp.118642, 2019.
[23] Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: entering the mainstream. International Journal of Scientific Research in Multidisciplinary Science, Vol. 303, Issue 5665, pp.1818-1822, 2004.
[24] Kratz, F. (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, Vol.132, Issue.3, pp.171-183, 2008.
[25] He, Q., & Shi, J. (2010). Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, Vol.20, Issue.40, pp.7599-7602, 2010.
[26] Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: an updated review. Pharmaceutics, Vol. 9, Issue.2, pp.12, 2017.
[27] Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature materials, Vol.12, Issue.11, pp. 991-1003, 2013.