References
[1] Alkharabsheh, Hiba M., Mahmoud F. Seleiman, Martin Leonardo Battaglia, Ashwag Shami, Rewaa S. Jalal, Bushra Ahmed Alhammad, Khalid F. Almutairi, and Adel M. Al-Saif. "Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review." Agronomy 11, no. 5, 2021.
[2] A. M. Abdallah, H. S. Jat, M. Choudhary, E. F. Abdelaty, P. C. Sharma, and M. L. Jat, “Conservation agriculture effects on soil water holding capacity and water-saving varied with management practices and agroecological conditions: A Review,” Agronomy, vol. 11, no. 9, p. 1681, 2021.
[3] P. Khatri, P. Kumar, K. S. Shakya, M. C. Kirlas, and K. K. Tiwari, “Understanding the intertwined nature of rising multiple risks in modern agriculture and food system,” Environment, Development and Sustainability, vol. 26, no. 9, pp. 24107–24150, 2024.
[4] A. A. Shahane and Y. S. Shivay, “Soil health and its improvement through novel agronomic and innovative approaches,” Frontiers in Agronomy, vol. 3, p. 680456, 2021.
[5] Domingues, Rimena R., Miguel A. Sánchez-Monedero, Kurt A. Spokas, Leônidas CA Melo, Paulo F. Trugilho, Murilo Nunes Valenciano, and Carlos A. Silva. "Enhancing cation exchange capacity of weathered soils using biochar: feedstock, pyrolysis conditions and addition rate." Agronomy 10, no. 6, 2020.
[6] Saleem, I., Riaz, M., Mahmood, R., Rasul, F., Arif, M., Batool, A., Akmal, M.H., Azeem, F. and Sajjad, S, “Biochar and microbes for sustainable soil quality management,” in Microbiome under changing climate, Elsevier, pp. 289–311, 2022.
[7] A. Salma, L. Fryda, and H. Djelal, “Biochar: A Key Player in Carbon Credits and Climate Mitigation,” Resources, vol. 13, no. 2, p. 31, 2024.
[8] J. A. Ippolito et al., “Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review,” Biochar, vol. 2, no. 4, pp. 421–438, Dec. 2020, doi: 10.1007/s42773-020-00067-x.
[9] H. Singh, B. K. Northup, C. W. Rice, and P. V. V. Prasad, “Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis,” Biochar, vol. 4, no. 1, p. 8, Dec. 2022, doi: 10.1007/s42773-022-00138-1.
[10] A. Schapel, R. Bell, S. Yeap, and D. Hall, “Sandy Soil Constraints: Organic and Clay Amendments to Improve the Productivity of Sandy Soils,” in Soil Constraints and Productivity, CRC Press, 2023, pp. 343–364. Accessed: Nov. 10, 2024.
[11] P. A. Williams, S. Karanja Ng’ang’a, O. Crespo, and M. Abu, “Cost and benefit analysis of adopting climate adaptation practices among smallholders: the case of five selected practices in Ghana,” Climate Services, vol. 20, p. 100198, 2020.
[12] J. Shrestha, M. Kandel, S. Subedi, and K. K. Shah, “Role of nutrients in rice (Oryza sativa L.): A review,” Agrica, vol. 9, no. 1, pp. 53–62, 2020.
[13] Joseph, S., Cowie, A.L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M.L., Graber, E.R., Ippolito, J.A., Kuzyakov, Y. and Luo, Y., “How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar,” GCB Bioenergy, vol. 13, no. 11, pp. 1731–1764, Nov. 2021, doi: 10.1111/gcbb.12885.
[14] M. Badiani, A. Raschi, A. R. Paolacci, and F. Miglietta, “Plants responses to elevated CO2; a perspective from natural CO2 springs,” in Environmental pollution and plant responses, Routledge, pp. 45–81, 2023.
[15] Duan, S., Al-Huqail, A.A., Alsudays, I.M., Younas, M., Aslam, A., Shahzad, A.N., Qayyum, M.F., Rizwan, M., Alhaj Hamoud, Y., Shaghaleh, H. and Hong Yong, J.W., “Effects of biochar types on seed germination, growth, chlorophyll contents, grain yield, sodium, and potassium uptake by wheat (Triticum aestivum L.) under salt stress,” BMC Plant Biol, vol. 24, no. 1, p. 487, Jun. 2024, doi: 10.1186/s12870-024-05188-0.
[16] Abideen, Z., Koyro, H.W., Hasnain, M., Hussain, M.I., El-Keblawy, A., El-Sheikh, M.A. and Hasanuzzaman, M., “Biochar Outperforms Biochar-Compost Mix in Stimulating Ecophysiological Responses and Enhancing Soil Fertility under Drought Conditions,” J Soil Sci Plant Nutr, Oct. 2024, doi: 10.1007/s42729-024-02073-5.
[17] Liu, M., Ke, X., Liu, X., Fan, X., Xu, Y., Li, L., Solaiman, Z.M. and Pan, G., “The effects of biochar soil amendment on rice growth may vary greatly with rice genotypes,” Science of the Total Environment, vol. 810, p. 152223, 2022.
[18] Murtaza, G., Ahmed, Z., Usman, M., Tariq, W., Ullah, Z., Shareef, M., Iqbal, H., Waqas, M., Tariq, A., Wu, Y. and Zhang, Z., “Biochar induced modifications in soil properties and its impacts on crop growth and production,” Journal of Plant Nutrition, pp. 1–15, Jan. 2021, doi: 10.1080/01904167.2021.1871746.
[19] A. Kapoor, R. Sharma, A. Kumar, and S. Sepehya, “Biochar as a means to improve soil fertility and crop productivity: a review,” Journal of Plant Nutrition, vol. 45, no. 15, pp. 2380–2388, Sep. 2022, doi: 10.1080/01904167.2022.2027980.
[20] L. Xia et al., “Climate mitigation potential of sustainable biochar production in China,” Renewable and Sustainable Energy Reviews, vol. 175, p. 113145, 2023.