References
[1] S.S. Omorodion, “New Iterative Method for Solving the Time Fractional Benjamin-Mahony-Burger Equation,”International Journal of Scientific Research in Mathematical and Statistical Sciences,” Vol.8, Issue.4, pp.18-25, 2021.
[2] S. Momani, R. Qaralleh, “Numerical Approximations and Pade Approximants for a Fractional Population Growth Model,” Appl. Math. Model., Vol. 31, Issue.1, pp. 1907–1914, 2007.
[3] A. Prakash, M. Kumar, “Numerical Solution of Two Dimensional Time-Fractional Order Biological Population Model,” Open Physics,Vol.14, Issue.1, pp.177-186, 2016.
[4] A. Prakash, M. Goyal, S. Gupta, “Fractional Variation Iteration Method for Solving Time-Fractional Newell-Whitehead-Segel Equation,” Nonlinear Engineering, Vol.8, Issue.1, pp.1-10, 2018. doi: https://doi.org/10.1515/nleng-2018-0001.
[5] A. Prakash, M. Kumar, K. Sharma, “Numerical Method for Solving Coupled Burgers Equation,” Applied Mathematics and computation, Vol.260, pp.314-320, 2015.
[6] M. Yavuz, N. Ozdemir, “Numerical Inverse Laplace Homotopy Technique for Fractional Heat Equations,” Therm. Sci., Vol.22, Issue.1, pp.185-194, 2018.
[7] Z. Hammouch, T. Mekkaoui, “A Laplace-Variational Iteration Method for Solving the Homogeneous Smoluchowski Coagulation Equation,” Applied Mathematical Sciences, Vol.6, Issue.18, pp.879 – 886, 2012.
[8] A. Prakash, “Analytical Method for Space-Fractional Telegraph Equation by Homotopy Perturbation Transform Method,” Nonlinear Engineering, Vol.5, Issue.2, pp.123-128, 2016.
[9] D. Kumar, J. Singh, D. Baleanu, “A New Analysis for Fractional Model of Regularized Long-Wave Equation Arising in Ion Acoustic Plasma Waves,” Math. Meth. Appl. Sci., Vol.40, pp.5642-5653, 2017.
[10] A. Prakash, H. Kaur, Numerical Solution for Fractional model of Fokker-Plank Equation by Using Q-HATM,” Chaos, Solitons & Fractals, Vol.105, pp.99-110, 2017.
[11] A. Prakash, H. Kaur, “Q-Homotopy Analysis Transform Method for Space and Time-Fractional Nonlinear Kdv-Burgers Equations,” Nonlinear Sci. Lett. A, Vol.9, Issue.1, pp.44-61, 2018.
[12] H. Bulut, H. M. Baskonus, Y. Pandir, “The Modified Trial Equation Method for Fractional Wave Equation and Time Fractional Generalized Burgers Equation,” Abstract and Applied Analysis, Vol.1, pp.1-8, 2013, dio: http://dx.doi.org/10.1155/2013/636802.
[13] A. Prakash, M. Kumar, D. Baleanu, “A New Iterative Technique for a Fractional Model of Nonlinear Zakharov-Kuznetsov Equations Via Sumudu Transform,” Applied Mathematics and computation, Vol.334, pp.30-40, 2018.
[14] M. Yavuz, N. Ozdemir, H. M. Baskonus, “Solutions of Partial Differential Equations Using The Fractional Operator Involving Mittag-Leffler Kernel,” Eur. Phys. J. Plus, Vol.133, Issue.6, pp.215, 2018.
[15] L.D. Landau, E.M. Lifshitz, “Course of Theoretical Physics,” Fluid Mechanics; Pergamon Press, UK, pp.192-226, 1987.
[16] Temam R., “Navier–Stokes Equations,” Theory and Numerical Analysis, North-Holland, 1979.
[17] M. El-Shahed, A. Salem, “On The Generalized Navier–Stokes Equations,” Appl. Math. Comput., Vol.156, pp.287-293, 2004.
[18] A.A. Ragab, K.M. Hemida, M.S. Mohamed, M.A. Abd-El Salam, “Solution of Time- Fractional Navier- Stokes Equations by Using Homotopy Analysis Method,” Gen. Math. Notes, Vol.13, Issue.2, pp.13-21, 2012.
[19] M. Bagyalakshmi, G. SaiSundarakrishnan, “Tarig Projected Differential Transform Method To Solve Fractional Nonlinear Partial Differential Equations,” Boletim da Sociedade Paranaense de Matematica Vol.38, Issue.3, pp.23-46, 2019. dio:10.5269/bspm.v38i3.34432.
[20] E. Nemah, “Homotopy Transforms Analysis Method for Solving Fractional Navier-Stokes Equations with Applications,” Iraqi Journal of Science, Vol.61, No.8, pp. 2048-2054, 2020. dio: 10.24996/ijs.2020.61.8.20.
[21] A. A. Ragab, K. M. Hemida, M.S. Mohamed, M.A. Abd-El Salam, “Solution of Time-Fractional Navier-Stokes Equation by Using Homotopy Analysis Method,” Gen. Math. Notes, Vol.13, Issue.2, pp.13-21, 2012.
[22] A. Prakash, D.G. Prakasha, P. Veeresha, “A Reliable Algorithm for Time-Fractional Navier-Stokes Equations Via Laplace Transform,” Nonlinear Engineering, Vol.8, Issue.1, pp. 695-701, 2019. dio:10.1515/nleng-2018-0080.
[23] N. A. Khan, A. Ara, S. A. Ali, A. Mahmood, “Analytic Study of Navier-Stokes Equation With Fractional Order Using He’s HomoTopy Perturbation and Variational Iteration Method,” International Journal of Nonlinear Science and Numerical Simulation,Vol.10, Issue.9, pp.1127-1134, 2009.
[24] S. Kumar, D. Kumar, S. Abbasbandy, M. M. Rashidi, “Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method,” Ain Shams Engi-neering Journal, Vol.5, pp.569-574, 2014.
[25] S.M. Momani, Z. Odibat, “Analytical Solution of a Time-Fractional Navier-Stokes Equation by Adomain Decomposition method,” Appl. Math. Comp., Vol.177, pp.488-494, 2006.
[26] D. Kumar, J. Singh, S. Kumar, “A Fractional Model of Navier-Stokes Equation Arising In Unsteady Flow of a Viscous Fluid,” Journal of the Association of Arab Universities for Basic andApplied Science, Vol.17, pp.14-19, 2015.
[27] K. Wang, S. Liu, “Analytical Study of Time-Fractional Navier-Stokes Equation by Using Transform Methods,” Advances in Difference Equations, Vol.61, pp.1-12, 2016. dio: 10.1186/s13662-016-0783-9.
[28] S.G. Samko, A.A. Kilbas, O.I. Marichev, “Fractional Integrals and Derivatives, Theory and Applications,” Gordon and Breach Science Publishers, Switzerland, Australia, India, 1993.
[29] D. Loonker, P. K. Banerji, “On Tarig Fractional Di?erintegral Transform on Distri-bution Spaces,” Pure and Applied Mathematics Letters, Vol.2, pp.19-25, 2014.
[30] T.M. Elzaki, “Projected Di?erential Transform Method and Elzaki Transform for Solving System of Nonlinear Partial Di?erential Equations,” World Applied Sciences Journal, Vol.32, pp.1974-1979, 2014.