References
[1] M. A. Al-jawary, G. H. Radhi, and J. Ravnik, "Development of the Banach contraction method for the solution of nonlinear thin film flows of non-Newtonian fluids," Arab Journal of Basic and Applied Sciences, vol. 25, no. 3, pp. 122–131, 2018, doi: 10.1080/25765299.2018.1511079.
[2] S. Arabia, "Nonlinear Fredholm integro-differential equation in two-dimensional and its numerical solutions," AIMS Mathematics, vol. 6, pp. 10383–10394, 2021. doi: 10.3934/math.2021602.
[3] H. O. Bakodah and S. O. Almuhalbedi, "Solving system of integro differential equations using discrete Adomian decomposition method," Journal of Taibah University for Science, vol. 13, no. 1, pp. 805–812, 2019, doi: 10.1080/16583655.2019.1625189.
[4] T. L. Bo, L. Xie, and X. J. Zheng, "Numerical approach to wind ripple in desert," Int. J. Nonlin. Sci. Numer. Simul., vol. 8, no. 2, pp. 223–228, 2007.
[5] S. M. El-Sayed, D. Kaya, and S. Zarea, "The decomposition method applied to solve high-order linear Volterra-Fredholm integro-differential equations," Int. J. Nonlin. Sci. Numer. Simul., vol. 5, no. 2, pp. 105–112, 2004.
[6] M. El-Shahed, "Application of He’s homotopy perturbation method to Volterra’s integro-differential equation," Int. J. Nonlin. Sci. Numer. Simul., vol. 6, pp. 163–168, 2005.
[7] M. Ghasemi, M. Tavassoli, and E. Babolian, "Numerical solutions of the Volterra-Fredholm integral equations by homotopy perturbation method," Appl. Math. Comput., vol. 188, no. 1, pp. 446–449, 2007, doi: 10.1016/j.amc.2006.10.015.
[8] A. Ghitheeth and H. Mahmood, "Solve partial differential equations using the Banach contraction method and improve results using the trapezoidal rule," AL-Rafidain Journal of Computer Sciences and Mathematics, vol. 15, no. 1, pp. 69–75, 2021, doi: 10.33899/csmj.2021.168254.
[9] A. A. Hemeda, "A friendly iterative technique for solving nonlinear integro-differential and systems of nonlinear integro-differential equations," International Journal of Computational Methods, vol. 15, no. 1, pp. 1–15, 2018, doi: 10.1142/S0219876218500160.
[10] M. C. Kekana, M. Y. Shatalov, and S. P. Moshokoa, "A comparison of Adomian decomposition method and RK4 algorithm on Volterra integro differential equations of 2nd kind," International Journal of Applied Mathematical Research, vol. 4, no. 4, pp. 481–487, 2015, doi: 10.14419/ijamr.v4i4.4965
[11] N. H. Manjak, J. O. Okai, and M. K. A. Rakiya, "Solving transformed differential equation using Adomian decomposition method," IOSR Journal of Mathematics (IOSR-JM), vol. 13, no. 5, pp. 65–69, 2017, doi: 10.9790/5728-1305026569.
[12] Z. Odibat, "An optimized decomposition method for nonlinear ordinary and partial differential equations," Physica A: Statistical Mechanics and Its Applications, vol. 541, 2020, pp. 1–13, doi: 10.1016/j.physa.2019.123323.
[13] J. O. Okai, N. H. Manjak, and S. T. Swem, "The modified Adomian decomposition method for the solution of third-order ordinary differential equations," IOSR Journal of Mathematics, vol. 13, no. 6, pp. 61–64, 2017, doi: 10.9790/5728-1306046164.
[14] M. O. Olayiwola and K. O. Kareem, "A new decomposition method for integro-differential equations," Cumhuriyet Science Journal, vol. 43, no. 2, pp. 283–288, 2022.
[15] R. Rach, J.-S. D. Wang, and A.-M. W. Randolph, "A reliable modification of the Adomian decomposition method for higher-order nonlinear differential equations," Kybernetes, vol. 42, no. 2, pp. 282–308, 2013, doi: 10.1108/03684921311310611.
[16] A. Raslan and E. A. Entesar, "Enhancing Banach’s contraction method using the particle swarm optimization to solve the system Drinfeld-Sokolov-Wilson," in 3rd International Conference on Mathematics and Applied Science (ICMAS 2022), 2022, pp. 1–12, doi: 10.1088/1742-6596/2322/1/012031.
[17] J. Saberi-Nadjafi and A. Ghorbani, "He’s homotopy perturbation method: An effective tool for solving nonlinear integral and integro-differential equations," Comput. Math. Appl., vol. 58, pp. 2379–2390, 2009.
[18] J. Saberi-Nadjafi and M. Tamamgar, "The variational iteration method: A highly promising method for solving the system of integro-differential equations," Comput. Math. Appl., vol. 56, pp. 346–351, 2008.
[19] S.-Q. Wang and J. H. He, "Variational iteration method for solving integro-differential equations," Phys. Lett. A, vol. 367, no. 3, pp. 188–191, 2007.
[20] F. Z. Sun, M. Gao, S. H. Lei, et al., "The fractal dimension of the fractal model of dropwise condensation and its experimental study," Int. J. Nonlin. Sci. Numer. Simul., vol. 8, no. 2, pp. 211–222, 2007.
[21] N. H. Sweilum, "Fourth order integro-differential equations using variational iteration method," Comput. Math. Appl., vol. 54, no. 7–8, pp. 1086–1091, 2007.
[22] S. Tate and H. T. Dinde, "A new modification of Adomian decomposition method for nonlinear fractional-order Volterra integro-differential equations," World Journal of Modelling and Simulation, vol. 15, no. 1, pp. 33–41, 2019.
[23] H. Wang, H. M. Fu, H. F. Zhang, et al., "A practical thermodynamic method to calculate the best glass-forming composition for bulk metallic glasses," Int. J. Nonlin. Sci. Numer. Simul., vol. 8, no. 2, pp. 171–178, 2007.
[24] A. Wazwaz, "A reliable modification of Adomian decomposition method," Applied Mathematics and Computation, vol. 102, pp. 77–86, 1999.
[25] A. Wazwaz, "A new algorithm for calculating Adomian polynomials for nonlinear operators," Applied Mathematics and Computation, vol. 111, pp. 53–69, 2000.
[26] L. Xu, "Variational iteration method for solving integral equations," Int. J. Comput. Math. Appl., vol. 54, no. 7–8, pp. 1071–1078, 2007.
[27] L. Xu, J. H. He, and Y. Liu, "Electrospun nanoporous spheres with Chinese drug," Int. J. Nonlin. Sci. Numer. Simul., vol. 8, no. 2, pp. 199–202, 2007.
[28] E. Yusufoglu, "An efficient algorithm for solving integro-differential equations system," Appl. Math. Comput., vol. 192, no. 1, pp. 51–55, 2007.