Full Paper View Go Back
K.H. Singh1 , N. Ansari2 , M. Dutta3
Section:Research Paper, Product Type: Journal-Paper
Vol.5 ,
Issue.6 , pp.255-258, Dec-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrmss/v5i6.255258
Online published on Dec 31, 2018
Copyright © K.H. Singh, N. Ansari, M. Dutta . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: K.H. Singh, N. Ansari, M. Dutta, “On Quasi-Reduced Modules,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.6, pp.255-258, 2018.
MLA Style Citation: K.H. Singh, N. Ansari, M. Dutta "On Quasi-Reduced Modules." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.6 (2018): 255-258.
APA Style Citation: K.H. Singh, N. Ansari, M. Dutta, (2018). On Quasi-Reduced Modules. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(6), 255-258.
BibTex Style Citation:
@article{Singh_2018,
author = {K.H. Singh, N. Ansari, M. Dutta},
title = {On Quasi-Reduced Modules},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {12 2018},
volume = {5},
Issue = {6},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {255-258},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1001},
doi = {https://doi.org/10.26438/ijcse/v5i6.255258}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i6.255258}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1001
TI - On Quasi-Reduced Modules
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - K.H. Singh, N. Ansari, M. Dutta
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 255-258
IS - 6
VL - 5
SN - 2347-2693
ER -
Abstract :
This paper generalizes the concept of a reduced modules. We introduced the concept of quasi-reduced-I i.e, QR-I and quasi-reduced-II i.e, QR-II in modules and studied some of their properties.
Key-Words / Index Term :
Reducedring, Armendarizring, Semi-primerin and Rigidrings
References :
[1] M.B. Rege, S.C. Chhawchharia, “Armendariz rings ”, Proc. Japan Acad. Ser. A Math. Sci, Vol.31, pp.123-141, 2012.
[2] M. Baser, “On Armendariz and quasi-Armendariz modules”, Note di Mathematica n., Vol.31, pp.123-141, 2012.
[3] Kh.Hera Singh and A. M Bhuphang, “Semi-commutative and Duo Rings” Advances in Algebra Vol.8, pp. 1-12, 2015.
[4] Y.Hirano, “Regular modules and V-modules”, Hiroshima Math.J., Vol.31, pp.123-141, 2012.
[5] T.K. Lee, Y.Zhou, “Armendariz and reduced rings ”, Comm. Algebra, Vol.31, pp.123-141, 2012.
[6] T.K. Lee, Y.Zhou, “Reduced modules”, Lecture Notes in Pure Appl. Math, Vol.31, pp.123-141, 2012.
[7] Z. Liu, R. Zhao, “On weak Armendariz rings”,Comm. Algebra, Vol.31, pp.123-141, 2012.
[8] R.R. Andruszikiwiecz, E.R. Puczlowski, “Right fully idempotent rings need not be left fully idempotent ”, Glasgow Math.J, Vol.37, pp.155-157, 1995.
[9] L. Liang, L. Wang, Z. Liu, “On a generalization of semicommutative rings ”, Taiwanese J. of Math, Vol.31, pp.123-141, 2012.
[10] G. Marks, “On 2-Primal ore Extensions”, Comm in Algebra, Vol.31, pp.123-141, 2012.
[11] G. Marks, R. Mazurek, M. Ziembowski ,“A unified approach to the various generalization of Armendariz ring”, Bull.Aust.Math.Soc., Vol.31, pp.123-141, 2012.
[12] M.B. Rege, A.M. Buhphang, “On reduced modules and rings ”, International Electronic Journal of Algebra, Vol.31, pp.123-141, 2012.
[13] F.W. Anderson, K.R.Fuller, “Rings and Catagories of modules”, Springer-Verlag, 1974
[14] A.M. Buhphang, M.B. Rege, “Semi-commutative modules and armendariz modules ”, Arab J.Math.Sc., Vol.8, pp.53-65, 2002.
[15] B. Stenstrom, “Rings of Quotients-An Introduction to the Methods of Ring Theory”, Springer-Verlag, New York, 1975.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.