Full Paper View Go Back

On the Zagreb polynomials of transformation graphs

B. Basavanagoud1 , Praveen Jakkannavar2

Section:Research Paper, Product Type: Isroset-Journal
Vol.5 , Issue.6 , pp.328-335, Dec-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v5i6.328335


Online published on Dec 31, 2018


Copyright © B. Basavanagoud, Praveen Jakkannavar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: B. Basavanagoud, Praveen Jakkannavar, “On the Zagreb polynomials of transformation graphs,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.6, pp.328-335, 2018.

MLA Style Citation: B. Basavanagoud, Praveen Jakkannavar "On the Zagreb polynomials of transformation graphs." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.6 (2018): 328-335.

APA Style Citation: B. Basavanagoud, Praveen Jakkannavar, (2018). On the Zagreb polynomials of transformation graphs. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(6), 328-335.

BibTex Style Citation:
@article{Basavanagoud_2018,
author = {B. Basavanagoud, Praveen Jakkannavar},
title = {On the Zagreb polynomials of transformation graphs},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {12 2018},
volume = {5},
Issue = {6},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {328-335},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1054},
doi = {https://doi.org/10.26438/ijcse/v5i6.328335}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i6.328335}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1054
TI - On the Zagreb polynomials of transformation graphs
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - B. Basavanagoud, Praveen Jakkannavar
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 328-335
IS - 6
VL - 5
SN - 2347-2693
ER -

375 Views    183 Downloads    79 Downloads
  
  

Abstract :
In the year 2009, Fath-Tabar introduced the concept of Zagreb polynomials. The novel topological indices called Zagreb indices can be derived from these polynomials. In order to find the Zagreb polynomials of transformation graphs we introduce the concept of Zagreb co-polynomials, from which one can derive the Zagreb coindices. Further, we establish the relations connecting the Zagreb polynomials of the graph G to those of the transformation graphs.

Key-Words / Index Term :
Zagreb index, Zagreb polynomial, xyz-Point-Line transformation graph

References :
A. R. Ashrafi, T. Dos ̌lic ́, A. Hamzeh. “The Zagreb coindices of graph operations”, Discrete Appl. Math., Vol. 158, pp. 1571¬-1578, 2010.
W. Baoyindureng, M. Jixiang, “Basic properties of Total Transformation Graphs”, J. of Math. Study, Vol. 34, Issue. 2, pp. 109-116, 2001.
L. B. Bhajantri, "Fuzzy Logic Based Fault Detection in Distributed Sensor Networks", International Journal of Scientific Research in Computer Science and Engineering, Vol.6, Issue.2, pp.27-32, 2018.
B. Basavanagoud, “Basic properties of generalized -Point-Line transformation graphs”, J. Inf. Optim. Sci., Vol. 39, Issue. 2, pp. 561-580, 2018.
B. Basavanagoud, C. S. Gali, “Computing first and second Zagreb indices of generalized -Point-Line transformation graphs”, J. of Global Research Math. Archives, Vol. 5, Issue 4, pp. 100-125, 2018.
B. Basavanagoud, Chitra E, “Further results on Zagreb polynomials of generalized -Point-Line transformation graphs”, J. Cmput. Math. Sci., Vol. 9, Issue. 6, pp. 550-561, 2018.
A. R. Bindusree, I. Naci Cangul, V. Lokesha, A. Sinan Cevik, Zagreb polynomials of three graph operators, Filomat, Vol. 30, Issue. 7, pp. 1979-1986, 2016.
C. M. Da fonseca, D. Stevanovic ́, “Further properties of the second Zagreb index”, MATCH Commun. Math. Comput. Chem., Vol. 72, pp. 655-668, 2014.
A. Deng, A. Kelmans, J. Meng, “Laplacian Spectra of regular graph transformations”, Discrete Appl. Math., Vol. 161, pp. 118-133, 2013.
G. H. Fath-Tabar, “Zagreb Polynomial and Pi Indices of some NanoStructures”, Digest J. of Nanomaterials and Biostructures, Vol. 4, Issue. 1, pp. 189-191, 2009.
B. Furtula, I. Gutman, M. Dehmer, “On structure-sensitivity of degree-based topological indices”, Appl. Math. Comput., Vol. 219, pp. 8973-8978, 2013.
I. Gutman, N. Trinajstic ́, “Graph theory and molecular orbitals, Total -electron energy of alternant hydrocarbons”, Chem. Phys. Lett., Vol. 17, pp. 535-538, 1972.
I. Gutman, K. C. Das, “The first Zagreb index 30 years after”, MATCH Commun. Math. Comput. Chem., Vol. 50, pp. 83-92, 2004.
T. Hamada, I. Yoshimura, “Traversability and Connectivity of Middle Graph”, Discrete Math., Vol. 14, pp. 247-255, 1976.
F. Harary, “Graph Theory”, Addison-Wesley, Reading, 1969.
Harsh H. Patel, Purvi Prajapati, "Study and Analysis of Decision Tree Based Classification Algorithms", International Journal of Computer Sciences and Engineering, Vol.6, Issue.10, pp.74-78, 2018.
S. M. Hosamani, N. Trinajstic ́, “On Reformulated Zagreb Coindices”, Research Gate 2015-05-08 T 09:07:00 UTC.
G. Indulal, A. Vijayakumar, “A note on energy of some graphs”, MATCH Commun. Math. Comput. Chem., Vol. 59, pp. 269-274, 2008.
V. R. Kulli, “College Graph Theory”, Vishwa International Publications, Gulbarga, India, 2012.
Milic ́evic ́, S. Nikolic ́, N. Trinajstic ́, “On reformulated Zagreb indices”, Mol. Divers., Vol. 8, pp. 393-399, 2004.
S. Nikolic ́, G. Kovac ̌evic ́, A. Milic ́evic ́, N. Trinajstic ́, “The Zagreb indices 30 years after”, Croat. Chem. Acta, Vol. 76, pp. 99-117, 2003.
E. Sampathkumar, S. B. Chikkodimath, “Semitotal graphs of a graph I”, J. of Karnatak Univ. Sci., Vol. 18, pp. 274-280, 1973.
L. Shuxian, “Zagreb polynomials of thorn graphs”, Kragujevac J. Sci., Vol. 33, pp. 33-38, 2011.
G. Su, L. Xiong, L. Xu, “The Nordhaus-Gaddum-type inequalities for the Zagreb index and coindex of graphs”, Appl. Math. Lett., Vol. 25, pp. 1701-1707, 2012.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation