Full Paper View Go Back

Group Action on Fuzzy Normal Hemi-Subring

B. Sundarapandian1 , P. Thirunavukarasu2 , A. Solairaju3

Section:Research Paper, Product Type: Isroset-Journal
Vol.6 , Issue.1 , pp.225-228, Feb-2019


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v6i1.225228


Online published on Feb 28, 2019


Copyright © B. Sundarapandian, P. Thirunavukarasu, A. Solairaju . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: B. Sundarapandian, P. Thirunavukarasu, A. Solairaju, “Group Action on Fuzzy Normal Hemi-Subring,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.1, pp.225-228, 2019.

MLA Style Citation: B. Sundarapandian, P. Thirunavukarasu, A. Solairaju "Group Action on Fuzzy Normal Hemi-Subring." International Journal of Scientific Research in Mathematical and Statistical Sciences 6.1 (2019): 225-228.

APA Style Citation: B. Sundarapandian, P. Thirunavukarasu, A. Solairaju, (2019). Group Action on Fuzzy Normal Hemi-Subring. International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(1), 225-228.

BibTex Style Citation:
@article{Sundarapandian_2019,
author = {B. Sundarapandian, P. Thirunavukarasu, A. Solairaju},
title = {Group Action on Fuzzy Normal Hemi-Subring},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {2 2019},
volume = {6},
Issue = {1},
month = {2},
year = {2019},
issn = {2347-2693},
pages = {225-228},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1164},
doi = {https://doi.org/10.26438/ijcse/v6i1.225228}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i1.225228}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1164
TI - Group Action on Fuzzy Normal Hemi-Subring
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - B. Sundarapandian, P. Thirunavukarasu, A. Solairaju
PY - 2019
DA - 2019/02/28
PB - IJCSE, Indore, INDIA
SP - 225-228
IS - 1
VL - 6
SN - 2347-2693
ER -

214 Views    134 Downloads    102 Downloads
  
  

Abstract :
Zhan, 2005 [1] noted properties of fuzzy left h- ideals in hemirings with t- norm. Akram and Dar, 2007 [2] analyzed fuzzy left h-ideal in hemi rings with respect to s-norm. They studied anti-fuzzy Left h- ideals in Hemirings [3]. Prince Williams, 2007 [4] identified fuzzy Left h-ideal of Hemirings. In this article, groupoid action on each of (1).Normal fuzzy sub-hemi-rings (2). Union of two normal fuzzy sub-hemiring (3). Direct product of two normal fuzzy sub-hemi rings (4). Homomorphic image and its pre-image of normal fuzzy sub-hemiring (5). Relation between relation on R  R and a fuzzy sub-hemiring R.

Key-Words / Index Term :
Fuzzy sub-hemi-ring, Fuzzy normal sub-hemi-ring

References :
[1] J. Zhan, “On properties of fuzzy left h- ideals in hemirings with t- norms”, International Journal of Mathematics and Mathematical Sciences, Vol19, pp. 3127–3144, 2005.
[2] M. Akram, and K.H. Dar, “Fuzzy left h- ideal in hemirings with respect to a s- norm”, International Journal of Computational and Applied Mathematics, Vol 1, pp. 07–14, 2007.
[3] M. Akram, and K.H. Dar, “On Anti Fuzzy Left h-ideals in Hemirings”, International Mathematical Forum, 2(46), pp. 2295 – 2304, 2007.
[4] D.R. Prince Williams, “S - Fuzzy Left h - ideal of Hemirings”, International Journal of Computational and Mathematical Sciences, Vol1, Issue 2, 2007.
[5] U. Acar, F. Koyuncu, and B. Tanay,“Soft sets and soft rings”,Comput.Math.Appl., 59,pp. 3458–3463, 2010.
[6] A.O. Atagün, and A. Sezgin, “Soft substructures of rings, fields and modules”,Comput.Math.Appl., Vol. 61, pp. 592-601, 2011.
[7]. EceYetkin and NecatiOlgun, “Direct product of fuzzy groups and fuzzy rings”, International Mathematical Forum, Vol. 6, Issue 21, pp.1005 – 1015, 2011.
[8]. F. Feng, Y.B. Jun, and X. Zhao, “Soft semi rings”, Computers and Mathematics with Applications, Volume 56, pp. 2621-2628, 2008.
[9] JayantaGhosh, BivasDindaand T.K. Samanta, “Fuzzy soft rings and fuzzy soft ideals”, Int. J. Pure Appl.Sci. Technol., Vol2, Issue 2,pp. 66-74, 2011.
[10] L. Martinez, “Prime and primary L-fuzzy ideals of L-fuzzy rings”, Fuzzy Sets and Systems, 101,pp. 489–494, 1999.
[11] S. Onar, B. Ersoy, and U. Tekir, “Fuzzy soft gamma-ring”, IJST,Issue A4, pp. 469-476, 2012.
[12] O. RatnabalaDevi, “On the intuitionistic Q-Fuzzy Ideals of near rings”,NIFS, Vol15, Issue 3, pp. 25-32, 2009.
[13] K.P. Shum, and M. Akram,“Intuitionistic (T, S) -fuzzy ideals of near- rings”, Journal of Algebra Discrete Structures, Vol 6, Issue 1, pp. 37–52, 2008.
[14] Zhiming Zhang, “Intuitionistic fuzzy soft rings”, International Journal of Fuzzy Systems, Vol14, Issue 3, 2012.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation