Full Paper View Go Back

Equitable Edge Coloring of Strong Product of Cycle, Complete Graphs

S. Manimaran1 , S. Moidheen Aliyar2 , K. Manikandan3

Section:Survey Paper, Product Type: Isroset-Journal
Vol.6 , Issue.1 , pp.303-306, Feb-2019


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v6i1.303306


Online published on Feb 28, 2019


Copyright © S. Manimaran, S. Moidheen Aliyar, K. Manikandan . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S. Manimaran, S. Moidheen Aliyar, K. Manikandan, “Equitable Edge Coloring of Strong Product of Cycle, Complete Graphs,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.1, pp.303-306, 2019.

MLA Style Citation: S. Manimaran, S. Moidheen Aliyar, K. Manikandan "Equitable Edge Coloring of Strong Product of Cycle, Complete Graphs." International Journal of Scientific Research in Mathematical and Statistical Sciences 6.1 (2019): 303-306.

APA Style Citation: S. Manimaran, S. Moidheen Aliyar, K. Manikandan, (2019). Equitable Edge Coloring of Strong Product of Cycle, Complete Graphs. International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(1), 303-306.

BibTex Style Citation:
@article{Manimaran_2019,
author = {S. Manimaran, S. Moidheen Aliyar, K. Manikandan},
title = {Equitable Edge Coloring of Strong Product of Cycle, Complete Graphs},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {2 2019},
volume = {6},
Issue = {1},
month = {2},
year = {2019},
issn = {2347-2693},
pages = {303-306},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1186},
doi = {https://doi.org/10.26438/ijcse/v6i1.303306}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i1.303306}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1186
TI - Equitable Edge Coloring of Strong Product of Cycle, Complete Graphs
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - S. Manimaran, S. Moidheen Aliyar, K. Manikandan
PY - 2019
DA - 2019/02/28
PB - IJCSE, Indore, INDIA
SP - 303-306
IS - 1
VL - 6
SN - 2347-2693
ER -

446 Views    278 Downloads    90 Downloads
  
  

Abstract :
An edge coloring of graph G is equitable if for each vertex v of G, the number of edges of any one color incident with v differs from the number of edges of any other color incident with v by at most one. In this paper, we obtain the exact expressions for the equitable edge coloring of strong product of C_(n ) K_m.

Key-Words / Index Term :
Equitable edge coloring, Product graph, Cycle, Complete graph

References :
[1] Erdős, Paul (1964), "Problem 9", in Fieldler, M., Theory of Graphs and its Applications, Prague: Czech Acad. Sci. Publ., p. 159.
[2] M.A. Gang, M.A. Ming, “The equitable total chromatic number of some join graphs”, open journal of Applied Sciences (2012).
[3] R. P. Gupta, "The Chromatic Index and the Degree of a Graph", Not. Amer. Math. Soc. 13, 719, 1966.
[4] A. Hajnal, and E. Szemer´edi, (1970) “Proof of a conjecture of P. Erd˝os”, In Combinatorial Theory and its Application (P. Erd˝os, A. R´enyi, and V. T. S´os, eds), North-Holland, London, pp. 601–623.
[5] R. Hammack, W. Imrich and S. Klavzar, “Handbook of Product Graphs”, CRC Press, Taylor & Francis Group, Boca Raton, 2011
[6] H. A. Kierstead, A. V. Kostochka, (2008), "A short proof of the Hajnal-Szemerédi theorem on equitable colouring", Combinatorics, Probability and Computing, 17 (2): 265–270.
[7] S. Mohan, J. Geetha, K. somasundaram, “Total coloring of certain classes of product graphs”, Electronic notes in Disc. Math. 53(2016), 173-180.
[8] G. Sabidussi, “Graph Multiplication”, Math. Z. 1960, 72, 446-457.
[9] P. Seymour (1974), "Problem section", in McDonough, T. P.; Mavron, Eds., V. C., Combinatorics: Proceeding of the British Combinatorial Conference 1973, Cambridge, UK: Cambridge Univ. Press, pp. 201–202.
[10] S. Skiena, "Edge Colorings" §5.5.4 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica.Reading, MA: Addison-Wesley, p. 216, 1990.
[11] V. G. Vizing, “On an Estimate of the Chromatic Class of a p-Graph” [Russian]. Diskret Analiz 3, 23-30, 1964.
[12] V. G. Vizing, “The Cartesian product of graphs” Vyc. Sis. 1963, 9, 30-43.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation