Full Paper View Go Back
Fixed Point Theorem in Generalized Fuzzy Metric Space Using Kannan-Type Mappings
Geetanjali Sharma1 , Richa Gupta2 , Pankaj Tiwari3 , Akshay Sharma4
Section:Research Paper, Product Type: Isroset-Journal
Vol.6 ,
Issue.2 , pp.310-314, Apr-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrmss/v6i2.310314
Online published on Apr 30, 2019
Copyright © Geetanjali Sharma, Richa Gupta, Pankaj Tiwari, Akshay Sharma . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Geetanjali Sharma, Richa Gupta, Pankaj Tiwari, Akshay Sharma, “Fixed Point Theorem in Generalized Fuzzy Metric Space Using Kannan-Type Mappings,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.2, pp.310-314, 2019.
MLA Style Citation: Geetanjali Sharma, Richa Gupta, Pankaj Tiwari, Akshay Sharma "Fixed Point Theorem in Generalized Fuzzy Metric Space Using Kannan-Type Mappings." International Journal of Scientific Research in Mathematical and Statistical Sciences 6.2 (2019): 310-314.
APA Style Citation: Geetanjali Sharma, Richa Gupta, Pankaj Tiwari, Akshay Sharma, (2019). Fixed Point Theorem in Generalized Fuzzy Metric Space Using Kannan-Type Mappings. International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(2), 310-314.
BibTex Style Citation:
@article{Sharma_2019,
author = {Geetanjali Sharma, Richa Gupta, Pankaj Tiwari, Akshay Sharma},
title = {Fixed Point Theorem in Generalized Fuzzy Metric Space Using Kannan-Type Mappings},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {4 2019},
volume = {6},
Issue = {2},
month = {4},
year = {2019},
issn = {2347-2693},
pages = {310-314},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1295},
doi = {https://doi.org/10.26438/ijcse/v6i2.310314}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i2.310314}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1295
TI - Fixed Point Theorem in Generalized Fuzzy Metric Space Using Kannan-Type Mappings
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - Geetanjali Sharma, Richa Gupta, Pankaj Tiwari, Akshay Sharma
PY - 2019
DA - 2019/04/30
PB - IJCSE, Indore, INDIA
SP - 310-314
IS - 2
VL - 6
SN - 2347-2693
ER -
Abstract :
In this paper, we extend generalized Kannan-type mappings in generalized fuzzy metric space. Then, we prove a fixed point of this kind of mapping in generalized Kannan-type mappings in generalized fuzzy metric space, which generalize the well known results.
Key-Words / Index Term :
Common fixed points, Metric space, t-norm, Generalized Fuzzy metric space, Kannan-type mappings, Generalized Kannan-type mappings
References :
[1] A. Branciari, “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces”, Publ. Math. Debrecen, (1-2), pp. 31-37, 2000.
[2] A. George and P. Veeramani, “On some results in metric spaces”, Fuzzy Set and System., 64, pp. 395-399, 1994.
[3] Binayak S. Choudhury and Kirshnapada Das, “Fixed point of generalized Kannan-type mappings in generalized menger spaces”, Commun. Korean. Math. Soc., (4) 24, pp. 529-537, 2009.
[4] Binayak S. Choudhury and Kirshnapada Das, “Cyclic contraction result in 2- menger space”, Bull.of Int. Mathematical Virtual Institute, (2), pp. 223-234, 2012.
[5] Cho, et al., “Coupled coincidence point theorems in (Intuitionistic) fuzzy normed spaces”, Journal of Inequalities and Applications, 1(104), 2013.
[6] C. Dibari and C. Vetro, “Fixed points attractors and weak fuzzy contractive mappings in a fuzzy metric space”, J. Fuzzy Math, 13, pp. 973-982, 2005.
[7] I. Kramosil and J. Michalek, “Fuzzy metrics and statistical metric spaces”, Kybernetika, 11, pp. 336-344, 1975.
[8] J. O. Olaleru, G. A. Okeke and H. Akewe, “Coupled Fixed Point Theorems for Generalized ϕ-mappings satisfying Contractive Condition of Integral Type on Cone Metric Spaces”, International Journal of Mathematical Modeling & Computations, 2(2), pp. 87-98, 2012.
[9] K. Menger, “Statistical metrics”, Proc. Nat. Acad. Sci. U.S.A, 28, pp. 535-537, 1942.
[10] L. A. Zadeh, “Fuzzy sets”, Inform and Control, 8, pp. 338-353, 1965.
[11] M. Grabiec, “Fixed point in fuzzy metric spaces”, Fuzzy Set and System., 27, pp. 385-389, 1988.
[12] M. Sanei, R. Dehghan and A. Mahmoodi Rad,“The Identification by Using Fuzzy Numbers”, IJM2C, 1, pp. 51-59, 2012.
[13] P. Das and L. Kanta Dey, “A fixed point theorem in generalized metric spaces”, Soochow Journal of mathematics, 1, pp. 33-39, 2007.
[14] P. V. Subrahmanyam, “Completeness and fixed points”, Monatsh, Math, 80, pp. 325-330, 1975.
[15] R. Chugh and S. Kumar, “Weakly compatible maps in generalized fuzzy metric spaces”, J. Analysis, 10, pp. 65-74, 2002.
[16] R. Kannan, “Some result on fixed points”, Bull. Calcutta Math. Soc., 60, pp. 71-76, 1968.
[17] Z. K. Deng, “Fuzzy pseudo-metric spaces”, J. Math. Anal. Appl., 86, pp. 74-95,1982.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.