Full Paper View Go Back

Eigenvalues of Status Sum Adjacency Matrix of Graphs

S.Y. Talwar1 , H.S. Ramane2

Section:Research Paper, Product Type: Journal-Paper
Vol.6 , Issue.4 , pp.67-69, Aug-2019


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v6i4.6769


Online published on Aug 31, 2019


Copyright © S.Y. Talwar, H.S. Ramane . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S.Y. Talwar, H.S. Ramane, “Eigenvalues of Status Sum Adjacency Matrix of Graphs,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.4, pp.67-69, 2019.

MLA Style Citation: S.Y. Talwar, H.S. Ramane "Eigenvalues of Status Sum Adjacency Matrix of Graphs." International Journal of Scientific Research in Mathematical and Statistical Sciences 6.4 (2019): 67-69.

APA Style Citation: S.Y. Talwar, H.S. Ramane, (2019). Eigenvalues of Status Sum Adjacency Matrix of Graphs. International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(4), 67-69.

BibTex Style Citation:
@article{Talwar_2019,
author = {S.Y. Talwar, H.S. Ramane},
title = {Eigenvalues of Status Sum Adjacency Matrix of Graphs},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {8 2019},
volume = {6},
Issue = {4},
month = {8},
year = {2019},
issn = {2347-2693},
pages = {67-69},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1432},
doi = {https://doi.org/10.26438/ijcse/v6i4.6769}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i4.6769}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1432
TI - Eigenvalues of Status Sum Adjacency Matrix of Graphs
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - S.Y. Talwar, H.S. Ramane
PY - 2019
DA - 2019/08/31
PB - IJCSE, Indore, INDIA
SP - 67-69
IS - 4
VL - 6
SN - 2347-2693
ER -

474 Views    449 Downloads    137 Downloads
  
  

Abstract :
The distance between two vertices is the length of a shortest path joining them. The status (u) of vertex u in a connected graph G is defined as sum of distances between u and all other vertices in graph G. The status sum adjacency matrix of a graph G is SA(G) = [sij] in which sij = (u) + (v) if u and v are adjacent vertices and sij = 0, otherwise. In this paper we initiate the study of eigenvalues of status sum adjacency matrix of graphs.

Key-Words / Index Term :
Distance in graphs, status of a vertex, status sum adjacency matrix, eigenvalues

References :
[1] D. M. Cvetkovic, M. Doob, H. Sachs, “Spectra of Graphs”, Academic Press, New York, 1980.
[2] H. S. Ramane, A. S. Yalnaik, “Status connectivity indices of graphs and its applications to the boiling point of benzenoid hydrocarbons”, Journal of Applied Mathematics and Computing, Vol.55, pp.609-627, 2017.
[3] S. Y. Talwar, H. S. Ramane, “Status sum adjacency energy of graphs”, Research Review International Journal of Multidisciplinary, (in press).
[4] S. Bernard, J. M. Child, “Higher Algebra”, Macmillan India Limited, Delhi, India, 1994.
[5] H. S. Ramane, H. B. Walikar, “Bounds for the eigenvalues of graphs”, In Graphs, Combinatorics, Algorithms and Applications (Eds. S. Arumugam, B. D. Acharya, S. B. Rao), Narosa Publishing House, New Delhi, India, pp.115-122, 2005.
[6] H. S. Ramane, S. S. Shinde, S. B. Gudimani, J. B. Patil, “Bounds for the signless Laplacian eigenvalues of graphs”, International Journal of Mathematical Sciences and Engineering Applications, Vol.6, Issue 6, pp.129-135, 2012.
[7] K. Pattabiraman, A. Santhakumar, “Computing status connectivity indices and its coindices of composite graphs”, In Applied Mathematics and Scientific Computing, (Eds. B. Rushi Kumar, R. Sivaraj, B. Prasad, M. Nalliah, A. Reddy), Trends in Mathematics, Birkhauser, Cham, pp.479-487. 2019.
[8] A. T. Raj, J. V. Kureethara, “Zagreb radio indices of some graph with diameter two”, International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.4, Issue 6, pp.7-11, 2017.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation