Full Paper View Go Back
A Study of Kahlerian Einstein Manifold with Bochner Curvature Tensor
P. Bhardwaj1 , N. Kumar2
Section:Research Paper, Product Type: Journal-Paper
Vol.6 ,
Issue.4 , pp.89-92, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrmss/v6i4.8992
Online published on Aug 31, 2019
Copyright © P. Bhardwaj, N. Kumar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: P. Bhardwaj, N. Kumar, “A Study of Kahlerian Einstein Manifold with Bochner Curvature Tensor,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.4, pp.89-92, 2019.
MLA Style Citation: P. Bhardwaj, N. Kumar "A Study of Kahlerian Einstein Manifold with Bochner Curvature Tensor." International Journal of Scientific Research in Mathematical and Statistical Sciences 6.4 (2019): 89-92.
APA Style Citation: P. Bhardwaj, N. Kumar, (2019). A Study of Kahlerian Einstein Manifold with Bochner Curvature Tensor. International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(4), 89-92.
BibTex Style Citation:
@article{Bhardwaj_2019,
author = {P. Bhardwaj, N. Kumar},
title = {A Study of Kahlerian Einstein Manifold with Bochner Curvature Tensor},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {8 2019},
volume = {6},
Issue = {4},
month = {8},
year = {2019},
issn = {2347-2693},
pages = {89-92},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1436},
doi = {https://doi.org/10.26438/ijcse/v6i4.8992}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i4.8992}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1436
TI - A Study of Kahlerian Einstein Manifold with Bochner Curvature Tensor
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - P. Bhardwaj, N. Kumar
PY - 2019
DA - 2019/08/31
PB - IJCSE, Indore, INDIA
SP - 89-92
IS - 4
VL - 6
SN - 2347-2693
ER -
Abstract :
The main purpose of the present paper is to study of Kahlerian Einstein manifold with Bochner curvature tensor. Few interesting results for Kahlerian Einstein manifold with Bochner curvature tensor have been obtained. Further we discussed about the theory of Kahlerian Einstein manifold with Bochner curvature tensor with R is non-zero. If a non-affine holomorphically projective transformation satisfying the condition , .then Kahlerian manifold is terns into Kahlerian Einstein manifold. Necessary and sufficient condition that a holomorphically projective transformation is analytic in a Kahlerian Einstein manifold with non–vanishing scalar curvature tensor then its associated vector is analytic. An Kahlerian Einstein manifold, the associated vector of an analytic holomorphically projective transformation is analytic. An Einstein manifold with , any infinitesimal affine transformation is a killing vector. If the associated vector of an analytic holomorphically projective transformation satisfying the condition then a Kahlerian manifold satisfying the condition is not an Einstein manifold.
Key-Words / Index Term :
Kahlerian manifolds, Einstein manifold, Bochner Curvature Tensor, Kahlerian Einstein manifold, Killing vector, holomorphically projective transformation, Lie derivative, Lie Algebra, contravariant almost analytic vector, Covariant almost analytic vector
References :
[1] A.K. Singh, ”On Einstein-Kahlerian projective recurrent spaces”, Indian Jour. Pure appl.Math, 10(4),pp.483-492, 1984.
[2] H.A. Biswa, U.C. De, “On Generalized 3-recurrents space”, Ganit, J. Bangladesh Math. Soc., 14, 85-88, 1994.
[3] H.H. Khan, S. Uddin, V.A. Khan, “Some results on warped product submanifolds of a Sasakian manifold”, International Journal of Mathematics and Mathematical Sciences, USA, Vol. (2010)1 - 9. doi: 10.1155/2010/743074.
[4] J. Mikes, “Holomorphicall projective mapping and their generalizations”, journal of mathematical sciences 89, No. 3, 1334-1353, 1998.
[5] J.Mikes, O. Pokorna, “On holomorphically projective mappings onto Kahlerian spaces”, Rend Circ. Mat. Palermo (2) Suppl. 69, 181-186, 2002.
[6] K. B. Lal, S.S. Singh, “On Kahlerian space with recurrent Bochner curvature tensor” Acc. Naz. Dei Lance, Rend, 51(3-4), 213-220, 1971.
[7] K. Yano, ”Totally real Sub manifolds of a Kahlerian manifolds”, J. Differential geometry 11, 351-359, 1976.
[8] K. Yano, “On complex conformal connection”, Kodai Math Sem. Rep.-26, 137-151, 1975.
[9] K. Yano, T. Nagano, “Some theorems on projective and conformal transformations”, Indag. Math.14, 451-458, 1957.
[10] M. Matsumoto, “Kaehlerian space with parallel on vanishing Bochner curvature tensor”, Tensor N.S. 20(1), 25-28, 1969.
[11] N. Cengiz, O. Tarakc, A.Salirnov, “A note on Kahlerian manifolds”, Turk J. Math 30, 439-445, 2006.
[12] P. Bhardwaj, N. Kumar, M. Chandra, “An analytical study of generalized ricci 3- recurrent space in Kahlerian manifolds with Bochner curvature tensor”, International Journal of pure and Applied Mathematics, Volume- 118, No.22, 1435-1439, 2018.
[13] P. Bhardwaj, N. Kumar, M. Chandra, “A study of infinitesimal holomorphically projective transformation in Kahlerian sub-manifold with Bochner curvature tensor”,International Journal of Mathematical Archive-9(7), 1-10, 2018.
[14] S. Mathai, “Kaehlerian recurrent spaces”, Ganita 20 (2), 121-133, 1969.
[15] S. Tachibana, “On the Bochner curvature tensor”, Nat. Sci. Report. Ochanomizu University 18(1), 15-19, 1967.
[16] S. Tachibana, S. Ishihara, “On infinitesimal holomorphically projective transformation in Kahlerian manifolds”, Tohoku Math J., 12, 77-101, 1960.
[17] S. Tachibana, R.C. Liu, “Notes on Kaehlerian metrics with vanishing Bochner curvature tensor”, Kodai Math. Sem. Rep. 22, pp. 313-321, 1970.
[18] S. Yamaguchi, T.A. Adati, “On holomorphically sub-projective Kahlerian manifold”, Accademic Dei. Lincei, Serie VIII, LX, Fasc 4 April 1976.
[19] T. Otsuki, Y. Tashiro, “On curves in Kahlerian spaces”, Math. Jour. Okayama Uni. 4, 4-57, 1954.
[20] T. Sumitomo, “Projective and conformal transformations in compact Riemannian manifolds”, Tensor, New Series, 9, 113-135, 1959.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.