Full Paper View Go Back

Probabilistic Metric Space, Menger Space and Some Common Fixed Point Theorem

Krishnadhan Sarkar1 , Dinanath Barman2 , Mithun Paul3 , Kalishankar Tiwary4

Section:Research Paper, Product Type: Journal-Paper
Vol.6 , Issue.5 , pp.86-90, Oct-2019


Online published on Oct 31, 2019


Copyright © Krishnadhan Sarkar, Dinanath Barman, Mithun Paul, Kalishankar Tiwary . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Krishnadhan Sarkar, Dinanath Barman, Mithun Paul, Kalishankar Tiwary, “Probabilistic Metric Space, Menger Space and Some Common Fixed Point Theorem,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.5, pp.86-90, 2019.

MLA Style Citation: Krishnadhan Sarkar, Dinanath Barman, Mithun Paul, Kalishankar Tiwary "Probabilistic Metric Space, Menger Space and Some Common Fixed Point Theorem." International Journal of Scientific Research in Mathematical and Statistical Sciences 6.5 (2019): 86-90.

APA Style Citation: Krishnadhan Sarkar, Dinanath Barman, Mithun Paul, Kalishankar Tiwary, (2019). Probabilistic Metric Space, Menger Space and Some Common Fixed Point Theorem. International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(5), 86-90.

BibTex Style Citation:
@article{Sarkar_2019,
author = {Krishnadhan Sarkar, Dinanath Barman, Mithun Paul, Kalishankar Tiwary},
title = {Probabilistic Metric Space, Menger Space and Some Common Fixed Point Theorem},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2019},
volume = {6},
Issue = {5},
month = {10},
year = {2019},
issn = {2347-2693},
pages = {86-90},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1549},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1549
TI - Probabilistic Metric Space, Menger Space and Some Common Fixed Point Theorem
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - Krishnadhan Sarkar, Dinanath Barman, Mithun Paul, Kalishankar Tiwary
PY - 2019
DA - 2019/10/31
PB - IJCSE, Indore, INDIA
SP - 86-90
IS - 5
VL - 6
SN - 2347-2693
ER -

197 Views    173 Downloads    98 Downloads
  
  

Abstract :
In this note we use the concept of semi compatible pair of reciprocal continuous maps in Probabilistic metric space and in Menger Space. We define existing definitions in this literature, and prove a common fixed point theorem in these spaces. Our results improve many well-known existing results in this literature

Key-Words / Index Term :
Probabilistic metric space, Menger space, Semi compatible maps, Reciprocal continuous maps

References :
[1]. S. Banach, “Sur les opérationsdans les ensembles abstraitsetleur application aux équations intégrales”. Fundam. Math., French, Vol. 3, pp.133–181, 1992.
[2]. H. Bouhadjera and C. Godet–Thobie, “Common fixed point theorems for pairs of sub- compatible maps”, arXiv : 0906 .3159 v2, 2009.
[3]. B. S .Choudhury, S. K. Bhandari, “Kannan-type cyclic contraction results in 2-Menger space,” Mathematica Bohemica, Vol. 141, No. 1, pp.37-58, 2016.
[4]. B. S. Choudhury, K. Das, “A new contraction principle in Menger spaces”. Acta Math. Sin., Engl. Ser. Vol.24, pp.1379–1386, 2008.
[5]. B. S. Choudhury, K. Das, “A coincidence point result in Menger spaces using a control function.” Chaos Solitons Fractals, Vol. 42, pp.3058–3063, 2009.
[6]. B. S. Choudhury, K. Das, “Fixed points of generalized Kannan type mappings in gener- alized Menger spaces’. Commun. Korean Math. Soc. Vol. 24, pp.529–537, 2009.
[7]. B. S. Choudhury, K. Das, S. K. Bhandari, “A generalized cyclic C-contraction principle in Menger spaces using a control function”. Int. J. Appl. Math. Vol.24, pp.663–673, 2011.
[8]. B. S. Choudhury, K. Das, S. K. Bhandari, “Fixed point theorem for mappings with cyclic contraction in Menger spaces.” Int. J. Pure Appl. Sci. Technol. Vol. 4, pp.1–9, 2011.
[9]. P. N. Dutta, B. S. Choudhury, “A generalized contraction principle in Menger spaces using a control function”. Anal. Theory Appl., Vol.26, 110–121, 2010.
[10]. A .Jain and B. Singh,” Common fixed point theorems in Menger space through compatible maps of type (A)”, Chh. J. Sci.Tech.,Vol. 2, pp.1-12, 2005.
[11]. S. Kumar and R. Chugh, “Common fixed point theorems using minimal commutativity and reciprocal continuity conditions in metric spaces”, Sci. Math. Japan,, Vol. 56, pp. 269-275,2002
[12]. S. Kumar and B. D. Pant, “A common fixed point theorem in probabilistic metric space using implicit relatios,” Filomat, Vol. 22(2) ,pp. 43-52, 2008
[13]. P. Malviya, V. Gupta, V.H. Badshah, “Common fixed point theorem for semi compatible pairs of reciprocal continuous maps in Menger spaces’, Annals of Pure and Applied Mathematics, Vol. 11, No. 2, pp. 139-144, 2016.
[14]. K .Menger, “Statistical metrics,” Poc. Nat. Acad. Sci., vol. 28, pp. 535-537, 1942.
[15]. S. N. Mishra, “Common fixed points of compatible mappings in PM-space,” Math. Japon., 36(2), pp. 283-289, 1991
[16]. B. D. Pant and S. Chouhan, “Common fixed point theorems for semi-compatibility maps using implicit relation”, Int. J. of Math. Analysis, 3(28), pp. 1389-1398, 2009.
[17]. K. Sarkar and K. Tiwary, “Common Fixed Point Theorems for Weakly Compatible Mappings on Cone Banach Space,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol: 5, Issue-2, pp. 75-79, 2018.
[18]. B. Schweizer, A. Sklar, “Probabilistic Metric Spaces.” North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing, New York, 1983.
[19]. V.M. Sehgal, “Some fixed point theorems in functions analysis and probability,” Ph.D. dissertation, Wayne State Univ. Michigan, 1966.
[20]. V. M. Sehgal and A. T. Bharucha-Reid, “Fixed points of contraction mappings on probabilistic metric spaces”, Math. Systems Theory, Vol. 6 ,pp. 97-102, 1972
[21]. Y. Shi, L. Ren, X. Wang, “The extension of fixed point theorems for set valued mapping”. J. Appl. Math. Comput., 13,pp. 277–286, 2003.
[22]. S. L. Singh, B. D. Pant and R. Talwar, “Fixed points of weakly commuting mappings on Menger spaces,” Jnanabha, 23, pp.115-122, 1993.
[23]. S. L. Singh and B. D. Pant, “Common fixed point theorems in probabilistic metric space and extension to uniform spaces,” Honam. Math. J., pp. 1-12, 1984.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation