Full Paper View Go Back

Metric Dimension of Zero-Divisor Graph for the Ring Zn

Mithun Basak1 , Laxman Saha2 , Kalishankar Tiwary3

Section:Research Paper, Product Type: Journal-Paper
Vol.6 , Issue.6 , pp.74-78, Dec-2019


Online published on Dec 31, 2019


Copyright © Mithun Basak, Laxman Saha, Kalishankar Tiwary . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Mithun Basak, Laxman Saha, Kalishankar Tiwary, “Metric Dimension of Zero-Divisor Graph for the Ring Zn,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.6, Issue.6, pp.74-78, 2019.

MLA Style Citation: Mithun Basak, Laxman Saha, Kalishankar Tiwary "Metric Dimension of Zero-Divisor Graph for the Ring Zn." International Journal of Scientific Research in Mathematical and Statistical Sciences 6.6 (2019): 74-78.

APA Style Citation: Mithun Basak, Laxman Saha, Kalishankar Tiwary, (2019). Metric Dimension of Zero-Divisor Graph for the Ring Zn. International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(6), 74-78.

BibTex Style Citation:
@article{Basak_2019,
author = {Mithun Basak, Laxman Saha, Kalishankar Tiwary},
title = {Metric Dimension of Zero-Divisor Graph for the Ring Zn},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {12 2019},
volume = {6},
Issue = {6},
month = {12},
year = {2019},
issn = {2347-2693},
pages = {74-78},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1629},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1629
TI - Metric Dimension of Zero-Divisor Graph for the Ring Zn
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - Mithun Basak, Laxman Saha, Kalishankar Tiwary
PY - 2019
DA - 2019/12/31
PB - IJCSE, Indore, INDIA
SP - 74-78
IS - 6
VL - 6
SN - 2347-2693
ER -

433 Views    393 Downloads    139 Downloads
  
  

Abstract :
Metric Dimension of a simple connected graph is the minimum number of vertices those are used to identify each vertex of the graph uniquely using distance code. In this paper, we determine metric dimension of zero-divisor graph associated with the ring Zn.

Key-Words / Index Term :
Ring, Metric Dimension, Zero divisors, Zero-divisor Graph

References :
[1]Akbari, S., Mohammadian, A. On the zero-divisor graph of finite rings. J. Algebra. 314(1), 168–184, 2007
[2] Anderson, D. F., Frazier, A., Lauve, A., Livingston, P. S. The Zero-Divisor Graph of a
Commutative Ring, II, Lecture Notes in Pure and Applied Mathematics. 220, 61–72, 2001
[3] Anderson, D. F., Levy, R., Shapiro, J. Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra. 180, 221–241, 2003
[4] Anderson, D. F., Livingston, P. S. The zero-divisor graph of a commutative ring. J.Algebra. 217 , 434–447, 1999
[5] Anderson, D. D., Naseer, M. (1993). Beck‘s coloring of a commutative ring. J. Algebra. 159, 500–517, 1993
[6] Atiyah, M. F., MacDonald, I. G. Introduction to Commutative Algebra. Reading, MA: Addison-Wesley, 1969
[7] Beck, I. Coloring of commutative rings. J. Algebra. 116, 208–226, 1988
[8] Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Ho.mann, M., Mihalak, M., Ram, L. S. Network discovery and verification. IEEE J. On Sel. Areas Commun. 24, 2168–2181, 2006
[9] Chvatal, V. Mastermind. Combinatorica. 3, 325–329, 1983
[10] Corbas, B., Williams, G. D. Rings of order p5 II. Local rings. J. Algebra. 231(2), 691–704, 2000
[11] Garey, M. R., Johnson, D. S. Computers and Intractability. A Guide to the Theory of NP-Completeness. New York: Freeman 1979.
[12] Harary, F., Melter, R. A. On the metric dimension of a graph. Ars Combin. 2, 191–195, 1976
[13] Khuller, S., Raghavachari, B. and Rosenfeld, A. Landmarks in graphs, Discrete Appl.Math., 70, 217–229, 1996
[14] Mulay, S. B. Cycles and symmetries of zero-divisors. Commun. Algebra. 30(7), 3533–3558.
[15] Pirzada, S., Raja, R., Redmond, S. P. Locating sets and numbers of graphs associated to commutative rings. J. Algebra Appl. 13(7), 1450047 18 pp, 2014
[16] Raja, R., Pirzada, S., Redmond, S. P. On Locating numbers and codes of zero-divisor graphs associated with commutative rings. J. Algebra Appl. 15(1), 1650014 22pp, 2016
[17] Redmond, S. P. The zero-divisor graph of a noncommutative ring. Int. J. Commutative Rings. 1(4) , 203–211, 2002
[18] Redmond, S. P. An ideal-based zero-divisor graph of a commutative ring. Commun. Algebra. 31, 4425–4443, 2003
[19] Sebo, A., Tannier, E. On metric generators of graphs. Math. Oper. Res. 29, 383–393, 2004
[20] Slater, P. Leaves of trees. Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory and Computing, 14, 549–559, 1975

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation