Full Paper View Go Back

Cone b-Metric Spaces and Extension of Fixed Point Theorems of Generalized Contraction Mappings with rational expression

S. K. Tiwari1 , R. Kurre2

Section:Research Paper, Product Type: Journal-Paper
Vol.7 , Issue.1 , pp.15-20, Feb-2020


Online published on Feb 28, 2020


Copyright © S. K. Tiwari, R. Kurre . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S. K. Tiwari, R. Kurre, “Cone b-Metric Spaces and Extension of Fixed Point Theorems of Generalized Contraction Mappings with rational expression,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.7, Issue.1, pp.15-20, 2020.

MLA Style Citation: S. K. Tiwari, R. Kurre "Cone b-Metric Spaces and Extension of Fixed Point Theorems of Generalized Contraction Mappings with rational expression." International Journal of Scientific Research in Mathematical and Statistical Sciences 7.1 (2020): 15-20.

APA Style Citation: S. K. Tiwari, R. Kurre, (2020). Cone b-Metric Spaces and Extension of Fixed Point Theorems of Generalized Contraction Mappings with rational expression. International Journal of Scientific Research in Mathematical and Statistical Sciences, 7(1), 15-20.

BibTex Style Citation:
@article{Tiwari_2020,
author = {S. K. Tiwari, R. Kurre},
title = {Cone b-Metric Spaces and Extension of Fixed Point Theorems of Generalized Contraction Mappings with rational expression},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {2 2020},
volume = {7},
Issue = {1},
month = {2},
year = {2020},
issn = {2347-2693},
pages = {15-20},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1736},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=1736
TI - Cone b-Metric Spaces and Extension of Fixed Point Theorems of Generalized Contraction Mappings with rational expression
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - S. K. Tiwari, R. Kurre
PY - 2020
DA - 2020/02/28
PB - IJCSE, Indore, INDIA
SP - 15-20
IS - 1
VL - 7
SN - 2347-2693
ER -

507 Views    572 Downloads    134 Downloads
  
  

Abstract :
In this paper, we establish and extend some unique fixed point theorems for generalized contraction involving rational expressions in cone b- metric space. Our presented theorems are extended and improve of existing literature for mappings satisfying certain rational inequality.

Key-Words / Index Term :
Fixed Point, Contraction mappings, Complete cone metric space, Complete cone b-metric space, Rational inequality

References :
[1] S. Banach, “Sur les operations dans less ensembles abstrait et leur application au equations”, integrals Fundam. Math. 3, 133-181, 1922.
[2] L. G. Huang and X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappi ngs”, J. Math. Anal. Appl. 332(2), 1468 -1476, 2007.
[3] S. Rezapour and R. Hamlbarani, “Some notes on the paper Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl. 345, 719-724, 2008.
[4] N. Hussain and M. H. Shah,“KKM mappings in cone b-metric spaces”. Comput. Mat. Appl. 62, 1677-1684, 2011.
[5] L. Shi and S. Xu, “Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces”, Fixed point theory and application, no. 120, 2013.
[6] H. Huang and S. Xu, “Fixed point theorems of contractive mappings in cone b-metric spaces and applications”, Fixed point theory and Appls. 112:2013, 2013.
[7] R. George and B. Fisher,“Some generalized results of fixed points in cone b-metric spaces”, Mathematic Moravica, 17(2), 38-50, 2013.
[8] R. Georg and M. S. Khan,“On presic type extension of Banach contraction principle”, Int. J. Math. Anal. 21, 1019-1024, 2011.
[9] K. P. R. Rao, Md. Mushtaq Ali and B. Fisher, “On Presic type generalization of Banach contraction principle”, Mat Moravic 15(1), 41-47, 2011.
[10] R. George, K. P. Reshma and R.Rajagopalan, “generalized fixe poin theorem of presic type in Cone Metric spaces and application to Markow process” Fixed point theory, Article ID2011:85, 2011.
[11] S. K. Tiwari, Rita Pal and R. P. Dubey “Generalization of fixed point theorems in cone b-metric spaces”, Int. J. of Math. Archive, 5 (5), 115-122, 2014.
[12] G. S. Saluja, “Some Fixed point theorems of contractive type condition in cone b-metric spaces”, Nonlinear analysis forum 20(8), 241-255, 2015.
[13] P. Kumar and Z. K. Ansari, “Some common fixed point theorems of contractive mappings in cone b-metric spaces”, Int. J. of Math and its application 5 (4-A1), 1- 8, 2017
[14] S. K. Tiwari and Rukhamani Kurre, “Generalized fixed point theory of cone b-metric spaces”, 8(4), 139-146, 2017.
[15] G. S. Saluja, “Fixed point Results for generalized contractions in cone b- metric spaces”, Palestine journal of Mathematics, 6(1), 76-83, 2017.
[16] P. Kumar, Z. K. Ansari and A. Garg, “Fixed-point theorems for Rational contraction mappings in cone b-metric spaces”, South East Asain Journal of Math. & Math. Sci. 13(1), 111- 124, 2017.
[17] B. K. Dass and S. Gupta,“An extension of Banach contraction principle by rational expression”, Indian J. Pure Appl. Math., 6, 1455-1458, 1975.
[18] G. S. Saluja, “Some fixed-point results for contractive type condition in cone b-metric spaces and application”, Int. J. Math. Comb., 1, 1-17, 2018.
[19] I. A. Bakhtin, “Contraction mapping principle inalmost metric spaces”, Funct. Anal. Gos. Ped. Inst. Unianwsk, 30, 26-37, 1989.
[20] S. Czerwik, “Contraction mappings in b-metric Universitatis Ostraviensis, 1, 5-11, 1993.
[21] S. Czerwik,“Nonlinear set-valued contraction mappings in b-metric spaces”. Atti Semin. Mat. Fis. Univ. Modena, 46, 263-276, 1998.
[22] S. Czerwik, D. Krzyszt and S. L. Singh, “Round- off stability of iteration procedures for operators in b-metric spaces”, J. Natur. Phys. Sci., 11, 87-94, 1997.
[23] S. Czerwik, D. Krzyszt and S. L. Singh,“Round-off stability of iteration procedures for set valued operators in bmetric spaces”, J. Natur. Phys. Sci., (2001).
[24] S. Jankovic, Z. Kadelburg and S. Radenovic,“On cone metric spaces: a survey” Nonlinear Anal. 4(7), 2591-2601, (2011).

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation