Full Paper View Go Back

Performance of Logistic Regression and Multilayer Perceptron Neural Network in Classification of Objects

E. Fajariyanto1 , M. Fajar2

Section:Research Paper, Product Type: Journal-Paper
Vol.8 , Issue.1 , pp.52-55, Feb-2021


Online published on Feb 28, 2021


Copyright © E. Fajariyanto, M. Fajar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: E. Fajariyanto, M. Fajar, “Performance of Logistic Regression and Multilayer Perceptron Neural Network in Classification of Objects,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.8, Issue.1, pp.52-55, 2021.

MLA Style Citation: E. Fajariyanto, M. Fajar "Performance of Logistic Regression and Multilayer Perceptron Neural Network in Classification of Objects." International Journal of Scientific Research in Mathematical and Statistical Sciences 8.1 (2021): 52-55.

APA Style Citation: E. Fajariyanto, M. Fajar, (2021). Performance of Logistic Regression and Multilayer Perceptron Neural Network in Classification of Objects. International Journal of Scientific Research in Mathematical and Statistical Sciences, 8(1), 52-55.

BibTex Style Citation:
@article{Fajariyanto_2021,
author = {E. Fajariyanto, M. Fajar},
title = {Performance of Logistic Regression and Multilayer Perceptron Neural Network in Classification of Objects},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {2 2021},
volume = {8},
Issue = {1},
month = {2},
year = {2021},
issn = {2347-2693},
pages = {52-55},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=2286},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=2286
TI - Performance of Logistic Regression and Multilayer Perceptron Neural Network in Classification of Objects
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - E. Fajariyanto, M. Fajar
PY - 2021
DA - 2021/02/28
PB - IJCSE, Indore, INDIA
SP - 52-55
IS - 1
VL - 8
SN - 2347-2693
ER -

289 Views    277 Downloads    80 Downloads
  
  

Abstract :
Employment is a problem that always gets serious attention from the government. Problems with the quality of human resources, motivation, and work culture are influencing factors in labor force problems. Classification becomes important as a means of evaluation and concluding labor force problems. The classification method itself consists of the conventional method (require assumptions) and the robust method (does not require assumptions. This study uses several classification methods including the logistic regression, the backpropagation algorithm, and the backpropagation algorithm with the addition of momentum. The results of this study show that based on simulation, the backpropagation algorithm and the backpropagation with the addition of momentum results in a higher classification accuracy than the logistic regression, the existence of momentum can increase the accuracy of the backpropagation classification with the addition of momentum.

Key-Words / Index Term :
Performance, Logistic Regression, Neural Network, Classification

References :
[1] A.T.W. Utami, B.S.S. Ulama, “Penerapan Backpropagation untuk meningkatkan Efektivitas Waktu dan Akurasi pada Data Wall-Following Robot Navigation,” Jurnal Sains dan Seni ITS 4(2), pp. 2337-3520, 2013.
[2] Badan Pusat Statistik, “Pedoman Pencacah Survei Angkatan Kerja Nasional (SAKERNAS) Semesteran 2015,” Badan Pusat Statistik, Jakarta, 2015.
[3] Badan Penelitian, Pengembangan dan Informasi Kementerian Tenaga Kerja dan Transmigrasi, “Naskah Akademik Arah Kebijakan Ketenagakerjaan 2014 – 2019,” Badan Penelitian, Pengembangan dan Informasi Kementerian Tenaga Kerja dan Transmigrasi, Jakarta, 2013.
[4] B. Setyawam, "Pemodelan Regresi Logistik pada Kasus Berat Badan Lahir Rendah (BBLR) dan Pengaruh Agregasi Data terhadap Hasil Pendugaan ", Institut Pertanian Bogor, Bogor, 2015.
[5] D. Puspitaningrum, “Pengantar Jaringan Saraf Tiruan,” Penerbit ANDI, Yogyakarta, pp. 129-133, 2006.
[6] D. W. Hosmer, S. Lemeshow, ”Applied Logistic Regression,” John Wiley and Sons, Canada, pp. 6-14, 2000.
[7] E. Naibaho, “Perbandingan Backpropagation Neural Network dan Learning Vector Quantization (Studi Kasus: Klasifikasi Daerah Tertinggal di Indonesia Tahun 2015).” Padjadjaran University, Bandung, 2015.
[8] F. A. Hermawanti, “Data Mining,” Penerbit ANDI, Yogyakarta, 2007.
[9] H.J. Song, S.K. Ko, J.D. Kim, C.Y. Park, “Looking for the optimal machine learning algorithm for the Ovarian cancer screening,” International Journal of Bio-Science and Bio-Technology 5(2), pp. 41-48, 2013.
[10] J.D. Paola, R.A. Schowengerdt, “A Review and Analysis of Backpropagation Neural Networks for Classification of Remotely Sensed Multi-Spectral Imagery,” International Journal of Remote Sensing 16(16), pp. 3033-3058, 1995.
[11] M. Mentari, “Klasifikasi Menggunakan Kombinasi Multilayer Perceptron dan Alignment Particle Swarm Optimization,” Seminar Nasional Teknologi Informasi dan Komputasi, 2014.
[12] M. Maulidya, “Perbandingan Analisis Diskriminan dan Regresi Logistik (Studi Kasus Klasifikasi Konsumen Berdasarkan Tempat Berbelanja di Wilayah Taman-Sidoarjo),” Math UNESA 3(1), 2014.
[13] M. Sinungan,” Produktivitas: Apa dan Bagaimana,” Penerbit Bumi Aksara, Jakarta, 2005.
[14] M. Zare, H.R. Pourghasemi, M. Vafakhah, B. Pradhan, “Landslide Susceptibility Mapping at Vaz Watershed (Iran) Using an Artificial Neural Network Model: a Comparison Between Multilayer Perceptron (MLP) and Radial Basic Function (RBF) Algorithms,” Arab Journal Geosciences 6 (8), pp. 1-16, 2012.
[15] N. Kamiyama, N. Iijima, A. Taguchi, H. Mitsui, Y. Yoshida, M. Sone, “Tuning of Learning Rate and Momentum on Back-Propagation,” Singapore ICCS/ISITA, pp. 528-532, 1992.
[16] P.L. Liew, Y.C. Lee, Y.C. Lin, T.S. Lee, W.J Lee, W. Wang, C.W. Chien, “Comparison of Artificial Neural Networks with Logistic Regression in Prediction of Gallbladder Disease Among Obese Patients,” Digestive and Liver Disease 39, pp. 356-362, 2007.
[17] R. Sastri, "Pemodelan Kejadian Kematian Bayi di Indonesia menggunakan Regresi Logistik Terboboti ", Institut Pertanian Bogor, Bogor, 2015.
[18] S. Mishra, V.K. Singh, ”Monthly Energy Consumption Forecasting Based On Windowed Momentum Neural Network. IFAC-PapersOnLine 48-30, pp. 433–438, 2015.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation