Full Paper View Go Back

Conformable Fractional Reduced Differential Transform Method for Solving Linear and Nonlinear Time-Fractional Swift-Hohenberg (S-H) Equation

S.S. Omorodion1

Section:Research Paper, Product Type: Journal-Paper
Vol.8 , Issue.6 , pp.20-29, Dec-2021


Online published on Dec 31, 2021


Copyright © S.S. Omorodion . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S.S. Omorodion, “Conformable Fractional Reduced Differential Transform Method for Solving Linear and Nonlinear Time-Fractional Swift-Hohenberg (S-H) Equation,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.8, Issue.6, pp.20-29, 2021.

MLA Style Citation: S.S. Omorodion "Conformable Fractional Reduced Differential Transform Method for Solving Linear and Nonlinear Time-Fractional Swift-Hohenberg (S-H) Equation." International Journal of Scientific Research in Mathematical and Statistical Sciences 8.6 (2021): 20-29.

APA Style Citation: S.S. Omorodion, (2021). Conformable Fractional Reduced Differential Transform Method for Solving Linear and Nonlinear Time-Fractional Swift-Hohenberg (S-H) Equation. International Journal of Scientific Research in Mathematical and Statistical Sciences, 8(6), 20-29.

BibTex Style Citation:
@article{Omorodion_2021,
author = {S.S. Omorodion},
title = {Conformable Fractional Reduced Differential Transform Method for Solving Linear and Nonlinear Time-Fractional Swift-Hohenberg (S-H) Equation},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {12 2021},
volume = {8},
Issue = {6},
month = {12},
year = {2021},
issn = {2347-2693},
pages = {20-29},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=2648},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=2648
TI - Conformable Fractional Reduced Differential Transform Method for Solving Linear and Nonlinear Time-Fractional Swift-Hohenberg (S-H) Equation
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - S.S. Omorodion
PY - 2021
DA - 2021/12/31
PB - IJCSE, Indore, INDIA
SP - 20-29
IS - 6
VL - 8
SN - 2347-2693
ER -

572 Views    388 Downloads    63 Downloads
  
  

Abstract :
In this paper, we present the conformable fractional reduced differential transform method (CFRDTM) for finding the exact and approximate analytical solution for the time-fractional Swift-Hohenberg (S-H) equations with initial value. The S-H equation was first proposed in 1977 by J.B. Swift and P.C. Hohenberg to study the thermal fluctuations on a fluid near the Rayleigh-Benard convective instability. To demonstrate the efficiency and applicability of the proposed method, we considered linear and nonlinear time-fractional S-H equations with and without dispersive terms. Results are calculated and presented through 2D/3D graphical representations. The obtained results show that the CFRDTM is effective and simple in constructing the exact and approximate analytical solutions for the time fractional S-H equations, and it may also find wide application in other complicated fractional partial differential equations that originate in the areas of engineering and science.

Key-Words / Index Term :
Conformable Derivative, Conformable Fractional Reduced Differential Transform Method, Fractional Calculus, Time-Fractional Swift-Hohenberg Equation

References :
[1] G. F. Riemann, “Versuch Einer Allgemeinen Auffassung Der Integration Und Differentiation,” Gesammelte Mathematische Werke, Leipzig, 1896.
[2] J. Liouville, “Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions,” Journal de I’École. Polytéch. vol.13, pp.1–69, 1832.
[3] M. Caputo, “Elasticità e Dissipazione”. Bologna, 1969.
[4] I. Podlubny, “Fractional Differential Equations,” Academic Press, New York,1999.
[5] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, “Fractional Calculus,” Models and Numerical Methods, Boston, 2012.
[6] K. S. Miller, B. Ross, “An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[7] Y. Povstenko, “Linear Fractional Diffusion-Wave Equation for Scientists and Engineers” Birkhäuser, New York, 2015.
[8] D. Baleanu, G-C Wu, S-D. Zeng, “Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations,” Chaos, Solitons Fractals, vol.102, pp.99–105, 2017.
[9] N. H. Sweilam, M. M Hasan, D. Baleanu, “New studies for general fractional financial models of awareness and trial advertising decisions,” Chaos Solitons Fractals, vol.104, pp. 772–784, 2017.
[10] D. Y. Liu, O. Gibaru, W. Perruquetti, T. M. Laleg-Kirati, “Fractional order differentiation by integration and error analysis in noisy environment,” IEEE Trans. Autom. Control, vol.60, PP. 2945–2960, 2015. DOI: https://doi.org/10.3182/20130204-3-FR-4032.00208.
[11] A. Esen, T. A. Sulaiman, H. Bulut, H. M. Baskonus, “Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation,” Optik, vol.167, pp.150–156, 2018.
[12] P. Veeresha, D. G. Prakasha, H. M. Baskonus, “New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives,” Chaos, vol.29, Issue.013119, 2019. DIO: https://doi.org/10.1063/1.5074099.
[13] R. Caponetto, G. Dongola, L. Fortuna, A. Gallo “New results on the synthesis of FO-PID controllers,” Commun. Nonlinear Sci. Numer. Simul, vol.15,pp.997–1007,2010. DOI: http://dx.doi.org/10.1016/j.cnsns.2009.05.040.
[14] A. Prakash, P. Veeresha, D. G Prakasha, M. A. Goyal, “Homotopy technique for fractional order multi-dimensional telegraph equation via Laplace transform,” Eur. Phys. J. Plus, vol.134,pp.1–18,2019. DOI: http://dx.doi.org/10.1140/epjp/i2019-12411-y.
[15] P. Veeresha, D. G. Prakasha, H. M. Baskonus, “Novel simulations to the time-fractional Fisher’s equation,” Math. Sci.,vol.13, pp.33–42,2019. DOI:10.1007/s40096-019-0276-6. DOI: https://doi.org/10.1103/PhysRevA.15.319.
[16] J. B. Swift and P. C. Hohenberg, “Hydrodynamics fluctuations at the convective instability,” Phys. Rev. A, vol.15, pp.319–328, 1977.
[17] L. Lega, J. V. Moloney, A.C.Newell, “Swift–Hohenberg equation for lasers,” Phys. Rev. Lett., Vol.73, pp.2978–2981, 1994.
[18] L. A. Peletier and V. Rottschäfer, “Large time behaviour of solutions of the Swift–Hohenberg equation,” Comtes Rendu Mathematique, vol.336, pp.225–230, 2002. DOI: https://doi.org/10.1016/S1631-073X(03)00021-9.
[19] Y. Pomeau, and S. Zaleski, “Dislocation motion in cellular structures,” Phys. Rev. A, vol.27, pp.2710–2726, 1983. DOI: https://doi.org/10.1103/PhysRevA.27.2710.
[20] Y. Keskin, Selcuk University, Konya, Turkish, Ph.D. thesis, Department of Mathematics, Selcuk University ,2010.
[21] Y. Keskin and G. Oturanc, “Reduced differential transform method for partial differential equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol.10, pp. 741–749,2009. DOI: https://doi.org/10.1515/IJNSNS.2009.10.6.741.
[22] Y. Keskin and G. Oturanc, “The reduced differential transform method: a new approach to fractional partial differential equations,” Nonlinear Science Letters A, vol.1, no.2, pp.207–217, 2010.
[23] Y. Keskin and G. Oturanc, “The reduced differential transformation method for solving linear and nonlinear wave equations,” Iranian Journal of Science and Technology, vol.34, no.2, pp.113–122,2010.
[24] M. A. Abdou, “Fractional reduced differential transform method and its applications,” Journal of Nonlinear Sciences and Numerical Simulation, vol.26, pp.55–64, 2018.
[25] M. O. Al-Amr, “New applications of reduced differential transform method,” Alexandria Engineering Journal, vol.53, no. 1,pp.243–247,2014. DOI: https://doi.org/10.1016/j.aej.2014.01.003.
[26] M. S. Mohamed and K. A. Gepreel, “Reduced differential transform method for nonlinear integral member of Kadomtsev-Petviashvili hierarchy differential equations,” Journal of the Egyptian Mathematical Society, vol.25, no.1, pp.1–7, 2017. DOI: http://dx.doi.org/10.1016/j.joems.2016.04.007.
[27] R. K. Saeed and A. A. Mustafa, “Numerical solution of fisher-KPP equation by using reduced differential transform method,” in AIP Conference proceedings 11888(1), 020045, USA, 2017.
[28] H. Alrabaiah, I. Ahmad, K. Shah, I. Mahariqd, G. U. Rahmanf, “Analytical solution of non-linear fractional order Swift-Hohenberg equations,” Ain Shams Engineering Journal, In Press, Available online 6 March 2021. DOI: https://doi.org/10.1016/j.asej.2020.11.019.
[29] K. Nonlaopon, A. M. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, R. Shah, “Numerical investigation of fractional-order Swift–Hohenberg equations via a novel transform,” Symmetry, vol.13(7),1263,2021. DOI: https://doi.org/10.3390/sym1307126326.
[30] D. G. Prakasha, P. Veeresha, H. M. Baskonus, “Residual power series method for fractional Swift–Hohenberg equation. Fractal Fract., vol.3(1), 9, 2019. DIO: https://doi.org/10.3390/fractalfract3010009.
[31] N. A. Khan, F. Riaz, N. A. Khan, “On solutions of nonlinear time-space fractional Swift–Hohenberg equation: A comparative study", Ain Shams Engineering Journal, vol.5, pp.285–291, 2014. DOI: http://dx.doi.org/10.1016/j.asej.2013.09.001.
[32] N. A. Khan, N-U. Khan, M. Ayaz, A. Mahmood, “Analytical methods for solving the time-fractional Swift–Hohenberg (S–H) equation,” Computers and Mathematics with Applications, vol.61, pp.2182–2185, 2011. DOI: https://doi.org/10.1016/j.camwa.2010.09.009.
[33] W. K. Zahra, M. A. Nasr, D. Baleanu, “Time-fractional nonlinear Swift-Hohenberg equation: Analysis and numerical simulation,” Alexandria Engineering Journal, vol.59, pp.4491–4510, 2020. DOI: https://doi.org/10.1016/j.aej.2020.08.002.
[34] V. K. Srivastava, M. K. Awasthi, and S. Kumar, “Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method,” Egyptian Journal of Basic and Applied Sciences, vol.1, no.1, pp. 60–66, 2014. DOI: https://doi.org/10.1016/j.ejbas.2014.01.002.
[35] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, “A new definition of fractional derivative,” J. Comput. Appl. Math. Vol. 264, pp.65–70,2014. DOI: https://doi.org/10.1016/j.cam.2014.01.002.
[36] T. Abdeljawad, “On conformable fractional calculus,” J. Comput. Appl. Math. vol.279, pp.57–66, 2015. DOI: https://doi.org/10.1016/j.cam.2014.10.016.
[37] O. Acan, O. Firat, Y. Keskin, and G. Oturanc, “Solution of conformable fractional partial differential equations by reduced differential transform method,” Selcuk Journal of Applied Mathematics, 2016.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation