Full Paper View Go Back

Numerical Simulation for an Electron Magnetohydrodynamic (EMHD) Nanofluid with Iron Oxide (Fe3O4) under the triple effects of an Electric field, Heat generation/Absorption and Impermeability of the Surface

A.G. Madaki1 , A.A. Hussaini2 , R. Roslan3 , A.B. Umar4

Section:Research Paper, Product Type: Journal-Paper
Vol.11 , Issue.5 , pp.11-22, Oct-2024


Online published on Oct 31, 2024


Copyright © A.G. Madaki, A.A. Hussaini, R. Roslan, A.B. Umar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: A.G. Madaki, A.A. Hussaini, R. Roslan, A.B. Umar, “Numerical Simulation for an Electron Magnetohydrodynamic (EMHD) Nanofluid with Iron Oxide (Fe3O4) under the triple effects of an Electric field, Heat generation/Absorption and Impermeability of the Surface,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.11, Issue.5, pp.11-22, 2024.

MLA Style Citation: A.G. Madaki, A.A. Hussaini, R. Roslan, A.B. Umar "Numerical Simulation for an Electron Magnetohydrodynamic (EMHD) Nanofluid with Iron Oxide (Fe3O4) under the triple effects of an Electric field, Heat generation/Absorption and Impermeability of the Surface." International Journal of Scientific Research in Mathematical and Statistical Sciences 11.5 (2024): 11-22.

APA Style Citation: A.G. Madaki, A.A. Hussaini, R. Roslan, A.B. Umar, (2024). Numerical Simulation for an Electron Magnetohydrodynamic (EMHD) Nanofluid with Iron Oxide (Fe3O4) under the triple effects of an Electric field, Heat generation/Absorption and Impermeability of the Surface. International Journal of Scientific Research in Mathematical and Statistical Sciences, 11(5), 11-22.

BibTex Style Citation:
@article{Madaki_2024,
author = {A.G. Madaki, A.A. Hussaini, R. Roslan, A.B. Umar},
title = {Numerical Simulation for an Electron Magnetohydrodynamic (EMHD) Nanofluid with Iron Oxide (Fe3O4) under the triple effects of an Electric field, Heat generation/Absorption and Impermeability of the Surface},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2024},
volume = {11},
Issue = {5},
month = {10},
year = {2024},
issn = {2347-2693},
pages = {11-22},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=3669},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=3669
TI - Numerical Simulation for an Electron Magnetohydrodynamic (EMHD) Nanofluid with Iron Oxide (Fe3O4) under the triple effects of an Electric field, Heat generation/Absorption and Impermeability of the Surface
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - A.G. Madaki, A.A. Hussaini, R. Roslan, A.B. Umar
PY - 2024
DA - 2024/10/31
PB - IJCSE, Indore, INDIA
SP - 11-22
IS - 5
VL - 11
SN - 2347-2693
ER -

12 Views    10 Downloads    6 Downloads
  
  

Abstract :
our exploration is mainly concerned with the heat transfer properties of Fe3O4 -water base nanofluid past on an exponential impermeable shrinking/stretching surface. We examined how a boundary layer fluid flow toward a shrinking/stretching surface is affected by the combined actions of an electric field, heat generation/absorption and surface impermeability. Partial differential equations (PDEs) are used to illustrate the flow sensation. Making use of the proper similarity transformation technique, the system of ODEs is derived from the PDEs. The shooting method is then applied to these updated equations. According to the analysis, the Momentum profile is amplified with an increase in heat generation/ absorption, variable viscosity and magnetic field. The reverse is the case with an increased impermeability parameter. Furthermore, the temperature profile is enhanced with an increase in impermeability and electricity. The results may find use in a variety of technical domains, including the optimization of petroleum pipeline flow. The findings can direct further research in this field and advance our understanding of heat and mass transfer phenomena.

Key-Words / Index Term :
Heat generation/ absorption, Electric field, Suction/ injection, Magnetic field, Nanofluid

References :
[1] S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles, in: Developments and Applications of Non-Newtonian Flows’, FED- vol. 231/MDvol. 66, pp. 99- 105, 1995.
[2] V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros-Mendez, “Advances in Magnetic Nanoparticles for Biomedical Applications,” Advanced Healthcare Mater, Vol. 7, 1700845, 2018.
[3] M. Imran, M. M. Alam, S. Hussain, A. Abutaleb, A. Aziz, M.R. Chandan, K. Irshad, A. M. A. Al-Hagri, O. Y. Bakather, A. Khan, “Colloidal Fe3O4 nanoparticles-based oil blend ferro-nanofluid for heat transfer application,” European Physics Journal Plus, Vol. 36, No. 752, 2021.
[4] A.Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan, Y. K. Rui, “Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications,” Front. Chem. Vol. 9, No. 629054, 2021.
[5] A. A, Hussaini, A. G. Madaki, S.K. Alaramma A. Barde, “Numerical Study on the Influence of Thermophores and Magnetic Field on the Boundary Layer Flow Over a Moving Surface in a Nanofluid”, International Journal of Scientific Research and Modern Technology, Vol. 2 No 1, pp. 4- 9, 2022.
[6] F. H. Oyelami, B. O. Falodun, E. O. Ige, O. Y. Saka- Balogun, “Numerical Study of Chemical reaction and Magnetic field Effects on MHD Boundary Layer Flow over a Flat Plate,” CFD letters, Vol. 16 No 3, pp. 55- 68, 2023.
[7] N.A.M. Noor, S. Shafie, “Magnetohydrodynamics squeeze flow of sodium alginate-based Jeffrey hybrid nanofluid with heat sink or source”, Case Studies in Thermal Engineering, Vol. 49, pp. 1- 12, 2023. https://doi.org/10.1016/j.csite.2023.103303.
[8] A.G. Madaki, R. Roslan, M.S. Rusiman, C.S.K. Raju, “Analytical and numerical solutions of squeezing unsteady Cu and TiO2- nanofluid flow in the presence of thermal radiation and heat generation/absorption,” Alexandria Engineering Journal, Vol. 57, No 2, 1033- 1040, 2018.
[9] M. Ahmadi, A. Afkhami, T. Madrakian, “Magnetic Nanomaterials in Analytical Chemistry,” Elsevier B. V.: Amsterdam, the Netherlands, pp. 1–354, 2021.
[10] S. Dash, T. Das, T. P. Patel, P. K. Panda, M. Suar, S. K. Verma, “Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases,” Journal of Nano biotechnology, Vol. 20. No. 393, 2022.
[11] K. Wu, D. Su, J. Liu, R. Saha, J. P. Wang, “Magnetic Nanoparticles in Nanomedicine: A Review of Recent Advances,” Nanotechnology, Vol. 30, No. 502003, 2019.
[12] S. Hussain, M. M. Alam, M. Imran, N. Zouli, A. Aziz, K. Irshad, M. Haider, A. Khan, “Fe3O4 nanoparticles decorated multi-walled carbon nanotubes based magnetic nanofluid for heat transfer application,” Mater. Letter, Vol. 274, No. 128043, 2020.
[13] A. G. Madaki, A.A. Hussaini, L. Philemon, “Numerical results on the radiative MHD Squeeze flow of Vanadium Pentoxide (V2O5)-Based Jeffrey Hybrid Nanofluid through Porous Parallel Plates”, International Journal Scientific Research in Mathematical and Statistical Sciences, Vol. 11, No 1, pp. 48-55, E-ISSN: 2348-4519, 2024.
[14] A. G. Madaki, A.A. Hussaini, L. Philemon, “Heat and Mass Transfer in Radiant-Magnetohydrodynamics Squeeze Flow of Vanadium Pentoxide (V2O5)-Based Jeffrey Hybrid Nanofluid with Heat Source/Sink”, International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol. 11, No 1, pp.17-23, E-ISSN: 2348-4519, 2024.
[15] A. G. Madaki, A.A. Hussaini, L. Philemon, “MHD Jeffrey Hybrid nanofluid flow with Vanadium Pentoxide (V2O5) and thermal radiation squeezed between two parallel plates”, International Journal of Scientific Research in Physics and Applied Sciences, Vol. 11, No 2, pp.18-25, E-ISSN: 2348-4519, 2024.
[16] A. A. Hussaini, “Heat generation/ absorption along with suction/ injection effects on Powell- Eyring nanofluid flow”, International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol. 11, No 2, pp.51-60, E-ISSN: 2348-4519, 2024.
[17] M. A. Elsayed, M. F. Elbashbeshy, M. A. Khaled, “Effects of chemical reaction and activation energy on Marangoni flow, heat and mass transfer over circular porous surface”, Arab Journal of Basic and Applied Sciences, Vol. 30, No 1, 46- 54, 2023. DOI:10.1080/25765299.2023.2170064.
[18] Umair Manzoor, Hassan Waqas, Umar Farooq, Taseer Muhammad and Muhammad Imran. “Entropy optimization of Marangoni flow of hybrid nanofluid under the influence of viscous dissipation and activation energy: with melting phenomena,” Journal of Applied Mathematics and Mechanics, Vol.103, No.5, e202100416, 2023. doi,org/10,1002/zamm.202100416.
[19] M. Imran, N. Zouli, T. Ahamad, S. M. Alshehri, M. R. Chandan, S. Hussain, A. Aziz, M. A. Dar, A. Khan, “Carbon-coated Fe3O4 core–shell super-paramagnetic nanoparticle-based ferrofluid for heat transfer applications,” Nanoscale Advances, Vol.3, pp.1962–1975, 2021.
[20] K.M.R. Zamani, B. J. Stadler, “A guideline for effectively synthesizing and characterizing magnetic nanoparticles for advancing nanobiotechnology,” A review. Sensors, Vol.20, No.2554, 2020.
[21] Y. Sun, Y. Dai, X. Zhu, R. Han, X. Wang, C. A. Luo, C. “Nanocomposite prepared from bifunctionalized ionic liquid, chitosan, graphene oxide and magnetic nanoparticles for aptamer-based assay of tetracycline by chemiluminescence. Microchim” Acta, Vol.63, No.187, 2020.
[22] S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, “Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles” Advance Colloid Interface Science, Vol.281, No.102165, 2020.
[23] M. Imran, A. R. Anasri, A. H. Shaik, A. Aziz, S. Hussain, A. Khan, M. R. Chandan, “Ferrofluid synthesis using oleic acid coated Fe3O4 nanoparticles dispersed in mineral oil for heat transfer applications,” Mater Resources Express, Vol.5, No.036108, 2018.
[24] M. Imran, A. M. Affandi, M. M. Alam, A. Khan, A. I. Khan, “Advanced biomedical applications of iron oxide nanostructures based ferrofluids,” Nanotechnology, Vol.32, No.422001, 2021.
[25] M. Imran, A. H. Shaik, A. R. Ansari, A. Aziz, S. Hussain, A. F. F. Abouatiaa, A. Khan, M. R. Chandan, “Synthesis of highly stable -Fe2O3 ferrofluid dispersed in liquid paraffin, motor oil and sunflower oil for heat transfer applications,” RSC Advance, Vol.8, pp.13970–13975, 2018.
[26] B. Mahanthesh, B. Gireesha, I. Animasaun, “Exploration of Non-Linear Thermal Radiation and Suspended Nanoparticles Effects on Mixed Convection Boundary Layer Flow of Nanoliquids on a Melting Vertical Surface”, Journal of Nanofluids, Vol.7, No.5, pp.833- 843, 2018. 10.1166/jon.2018.1521.
[27] N.A.M. Noor, S. Shafie, M.A. Admon, “Heat and mass transfer on MHD squeezing flow of Jeffrey nanofluid in horizontal channel through permeable medium”, PLoS One Vol.16, No.5, pp.e0250402, 2021.
[28] M. Qasim, “Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink”, Alexandria Engineering Journal, Vol.52, No.4, pp.571–575, 2013.
[29] A. G. Madaki, A.A. Hussaini, L. Philemon, “Numerical results on the radiative MHD squeezed flow of Vanadium Pentoxide (V2O5)- based Jeffrey hybrid hybrid nanofluid through porous parallel plates”, International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.11, No.1, pp.48-55, E-ISSN: 2348-4519, 2024.
[30] A. A. Hussaini, A. G. Madaki, A. M. Kwami, “Modified Mathematical Model on the Study of Convective MHD Nanofluid flow with Heat Generation/Absorption’, International Journal of Engineering Research & Technology, Vol.10, No 09, 2021.
[31] Adnan Asghar, Abdul Fattah Chandio, Zahir Shah, Narcisa Vrinceanu, Wejdan Deebani, Meshal Shutaywi, Liaquat Ali Lund, “Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition”, Heliyon Vol.9, 13189, 2023. https://doi.org/10.1016/j.heliyon.2023.e13189.
[32] M. Sayed Abo?Dahab, A. Ramadan Mohamed, Abdelmoaty M. Abd?Alla, Mahmoud S. Soliman, “Double?diffusive peristaltic MHD Sisko nanofluid flow through a porous medium in presence of non?linear thermal radiation, heat generation/ absorption, and Joule heating’, Scientific Reports, Vol.13, 1432, 2023 https://doi.org/10.1038/s41598-023-27818-7.
[33] Abubakar Assidiq Hussaini, “Magnetohydrodynamic (MHD) nanofluid flow over a non- linear stretchable surface in the presence of Heat generation/ absorption’, International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.10, No 6, pp.41- 50, 2023.
[34] Ghulam Rasool, Anum Shafiq, Xinhua Wang, Ali J Chamkha, Abderrahim Wakif, “Numerical treatment of MHD Al2O3- Cu/ engine oil- based nanofluid flow in a Darcy- Forchheimer medium: Application of radiative heat and mass transfer laws”, International Journal of Modern Physics B Vol.38, No.09, 2024. https://doi.org/10.1142.S021797922451297.
[35] Ali Bendjaghlouli, Brahim Mahfoud, Hibet Errahmane Mahfoud, “Impact of wall electrical conductivity on heat transfer enhancement in MHD hybrid nanofluid flow within an annulus”, International Journal of Thermofluid Science and Technology, Vol. 11, No.2, pp.110204, 2024. https://doi.org/10.36963/IJTST.2024110204.
[36] Shimaa E. Waheed, Galal M. Moatimid, Abeer S. Elfeshawey, “Unsteady Magnetohydrodynamic squeezing Darcy- Forchheimer flow of Fe3O4 Casson nanofluid: Impact of heat source/ sink and thermal radiation”, Partial Differential Equations in Applied Mathematics, Vol. 10, pp. 100666, 2024.
[37] Zafar Mahmood a, Magda Abd El-Rahman, Umar Khan, Ahmed M Hassan, Hamiden Abd El-Wahed Khalifa, “Entropy generation due to nanofluid flow in porous media over radiative permeable exponentially surface with nanoparticle aggregation effect,” Tribology International, Vol. 188, 2023, pp. 108852, https://doi.org/10.1016/j.triboint.2023.108852.
[38] Khadija Rafique, Zafar Mahmood, S. Saleem, Sayed M. Eldin, Umar Khan, “Impact of nanoparticle shape on entropy production of nanofluid over permeable MHD stretching sheet at quadratic velocity and viscous dissipation”, Case Studies in Thermal Engineering, Vol. 45, pp. 102992, 2024
[39] A.G. Madaki, A. A. Hussaini, S. K. Alaramma, A. M. Musa, A. A. Tata, A. Barde, “Electron Magnetohydrodynamic (EMHD) Nanofluid flow with triple effects of Chemical reaction, Dufour diffusivity and impermeability of the surface along a slandering stretching sheet”. The Sciencetech, Vol. 4, No 1, pp. 23- 44, 2023. https://doi.org/10.1007/S10973021- 10569w.
[40] S. Kumar, A. A. Shaikh, S. F. Shah, H. B. Lanjwani, M. I. Anwar, S. A. Shehzad, “Numerical investigation of magnetized thermally radiative Fe3O4-Water base nanofluid,” Chemical Physics Letters, Vol. 824, No. 140571, 2023.
[41] D.B. Meade, B.S. Haran, R.E. White, “The shooting technique for the solution of two-point boundary value problems,” Maple Technical Newsletter, Vol. 3, No. 1, , pp. 1–8, 1996.
[42] A. A. Hussaini, A. G. Madaki, A. M. Kwami, “Modified Mathematical Model on the Study of Convective MHD Nanofluid flow with Heat Generation/Absorption”. International Journal of Engineering Research &Technology, Vol. 10 No 09, pp. 155- 163, 2021.
[43] A. Wakif, M. Zaydan, R. Sehaqui, “Further insight into steady three- dimensional MHD Sadiadis flows of radiating- reacting viscoelastic nanofluids via Wakif’s Buongiorno and Maxwell’s models”, Journal of Umm Al- Qura University for Applied Sciences, pp. 1- 13, 2024. http://doi.org/10.007/s43994-024-00141-1.
[44] S. Li, S. Ahmad, K. Ali, A. M. Hassan, W. Hamali, W. Jamshed, “A mathematical approach for modeling the blood flow containing nanoparticles by employing the Buogiorno’s model”, Nanotechnology Reviews, Vol. 12, No 1, 20230139, 2023.
[45] O. F. Helen1, F. B. Olumide, I. E. Olubunmi, S. O. Yetunde, “Numerical Study of Chemical Reaction and Magnetic Field Effects on MHD Boundary Layer Flow over a Flat Plate,” CFD Letters, Vol.16, No.3, 55-68, 2024. https://doi.org/10.37934/cfdl.16.3.5568
[46] G. Madaki, A. B. Umar, A. A. Hussaini, ”Heat Source/Sink Along Mass Suction Impacts on the Flow of the MHD Boundary Layer across a Flat Plate,” World Academics Journal of Engineering Sciences, Vol.11, No.2, 2024.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation