Full Paper View Go Back

Strong Convergence Theorems for Coincident Points of Banach Operator Pair

Sudhansu Sekhar1 , Gyandeo Prasad Tiwary2

  1. Dept. of Mathematics, Rajendra College (Jaiprakash University), Chapra, India.
  2. Dept. of Mathematics, Rajendra College (Jaiprakash University), Chapra, India.

Section:Review Paper, Product Type: Journal-Paper
Vol.4 , Issue.4 , pp.1-6, Aug-2017


Online published on Aug 30, 2017


Copyright © Sudhansu Sekhar, Gyandeo Prasad Tiwary . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Sudhansu Sekhar, Gyandeo Prasad Tiwary, “Strong Convergence Theorems for Coincident Points of Banach Operator Pair,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.4, Issue.4, pp.1-6, 2017.

MLA Style Citation: Sudhansu Sekhar, Gyandeo Prasad Tiwary "Strong Convergence Theorems for Coincident Points of Banach Operator Pair." International Journal of Scientific Research in Mathematical and Statistical Sciences 4.4 (2017): 1-6.

APA Style Citation: Sudhansu Sekhar, Gyandeo Prasad Tiwary, (2017). Strong Convergence Theorems for Coincident Points of Banach Operator Pair. International Journal of Scientific Research in Mathematical and Statistical Sciences, 4(4), 1-6.

BibTex Style Citation:
@article{Sekhar_2017,
author = {Sudhansu Sekhar, Gyandeo Prasad Tiwary},
title = {Strong Convergence Theorems for Coincident Points of Banach Operator Pair},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {8 2017},
volume = {4},
Issue = {4},
month = {8},
year = {2017},
issn = {2347-2693},
pages = {1-6},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=447},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=447
TI - Strong Convergence Theorems for Coincident Points of Banach Operator Pair
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - Sudhansu Sekhar, Gyandeo Prasad Tiwary
PY - 2017
DA - 2017/08/30
PB - IJCSE, Indore, INDIA
SP - 1-6
IS - 4
VL - 4
SN - 2347-2693
ER -

404 Views    336 Downloads    190 Downloads
  
  

Abstract :
We obtain results concerning strong convergence of coincident fixed points of asymptotically I-nonexpansive map T for which (T, I) is a Banach operator pair in a Banach space with uniformly Gateaux differentiable norm. Several coincident point and best approximation results for this newly defined class of maps are proved.

Key-Words / Index Term :
Banach, Gateaux, Approximation

References :
[1]. Argyros, I.K. On a fixed point theorem in a 2-Banach space, Rev. Acad. Cienc. Zaragoza, 2, 44, 1989, 19-21.
[2]. Assad, N.A. & Kirk, W.A. Fixed point theorems for set-valued mappings of contractive type. Pac. J. Math. 43, 1972, 553-562.
[3]. Bae, J.S. Reflexive of a Banach space with a uniformly normal structure. Proc. Amer. Math. Soc., 90, 2, 1984, 269-270.
[4]. Bynum, W.L. Normal structure coefficients for Banach Spaces. Pacific J. Math. 86, 1980, 427-435.
[5]. Caristi, J. & Kirk, W.A. Geometric fixed point theory and inwardness conditions. Proc. Conf. On Geometry of Metric and Linear Spaces. Michigan State Univ., 1974.
[6]. Diestel, J. Geometry of Banach spaces. Lecture Notes. No.485, Springer-Verlag, Berlin, 1975.
[7]. Dotson, W.G. Jr. Fixed points of non-expansive mappings in non-convex sets. Proc. Amer. Math. Soc., 38, 1973, 155-156.
[8]. Dugundji, J. & Granas, A. Fixed point theory. PWN, Warsa, 1982.
[9]. Eberlin, W.F. Weak compactness in Banach spaces. Proc. Nat. Acad. Sci., USA, 33, 1947, 51-53.
[10]. Economou, E. Green’s Function in Quantum Physics, Springer Verlag, 1983.
[11]. Dunford, N. & Schwsartz, J.T. Linear operators, Part-I, Interscience, New York, 1958.
[12]. Fisher, B. Common fixed points on a Banach Space. The Chung Journal, vol.XI, 1982, 12-15.
[13]. Fisher, B. & Sessa, S. Two common fixed point theorems for weakly commuting mappings. Period. Math. Hunger. 20, 3, 1989, 207-218.
[14]. Jackson, J. Classical Electrodynamics, Weley, 1975.
[15]. Lim, Qi Hou The convergence theorems of the sequence of Ishikawa iteratres for Lei contractive mappings. J. Math. Anal. Appl. 148, No.1, 1990, 55-62.
[16]. Nakahara, M. Geometry, Topology and Physics, Adam Hilger, 1990.
[17]. Nelson, James L., Singh, K.L. & Whitefield, J.H.M. Normal structures and non-expansive mappings in Banach spaces, non-linear analysis. World Sci., Publishing Singapore, 1987, 433-492.
[18]. Smulian, V. On the principle on inclusion in the space of type (B), Math. Sornik (N.S.), 5, 1939, 327-328.
[19]. Watson, G.A. A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1995.
[20]. Xu, Hong Kun A note on the Ishikawa iteration scheme. J. Math. Anal. Appl. 167, No.2, 1992, 582-587.
[21]. Zeidler, E. Applied Functional Analysis, Springer-Verlag, 1995.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation