Full Paper View Go Back

On the Tribonacci fractals

T. Sellami1

  1. Dept. of Mathematics, Faculty of sciences of Sfax, Sfax University, Sfax, Tunisia.

Section:Review Paper, Product Type: Isroset-Journal
Vol.5 , Issue.2 , pp.70-74, Apr-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v5i2.7074


Online published on Apr 30, 2018


Copyright © T. Sellami . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: T. Sellami, “On the Tribonacci fractals,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.2, pp.70-74, 2018.

MLA Style Citation: T. Sellami "On the Tribonacci fractals." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.2 (2018): 70-74.

APA Style Citation: T. Sellami, (2018). On the Tribonacci fractals. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(2), 70-74.

BibTex Style Citation:
@article{Sellami_2018,
author = {T. Sellami},
title = {On the Tribonacci fractals},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {4 2018},
volume = {5},
Issue = {2},
month = {4},
year = {2018},
issn = {2347-2693},
pages = {70-74},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=581},
doi = {https://doi.org/10.26438/ijcse/v5i2.7074}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i2.7074}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=581
TI - On the Tribonacci fractals
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - T. Sellami
PY - 2018
DA - 2018/04/30
PB - IJCSE, Indore, INDIA
SP - 70-74
IS - 2
VL - 5
SN - 2347-2693
ER -

802 Views    423 Downloads    144 Downloads
  
  

Abstract :
We consider the two tribonacci substitutions, a → ab, b → ac, c → a and a → ab, b → ca, c → a. In this paper we give some properties for the Tribonacci fractals, and its associated intersection fractal. We show in more details intersections of subtiles.

Key-Words / Index Term :
Rauzy fractals, Substitution dynamical systems, balanced pairs algorithm

References :
[1] P. Arnoux and S. Ito "Pisot substitutions and Rauzy fractals" Bull. Belg. Math. Soc. Simon Stevin 8: 181--207 (2001).
[2] M.Barge and B.Diamond. "Coincidence for substitutions of Pisot Type". Bell.Soc.Math. France, 130:619-626, 2002.
[3] Marcy Barge and Jarek Kwapisz, "Geometric theory of unimodular Pisot substitutions". American journal of mathematics(Print) 128:55, 1219-1282.
[4] Vicent Canterini and Anne Siegel : {"Automate des préfixes-suffixes associé une substitution primitive".J. Théor. Nombres Bordeaux 13, no. 2, 353--369, 2001.
[5] Amara Chandoul : {"On the continued fraction of fixed period in finite filds", Canadian mathematical bulletin.}.
[6] Amara Chandoul : {"The Pell Equation", Advances in Pure Mathematics..}
[7] Amara Chandoul : {"On the continued fraction over the filds of formal power series" , Canadian mathematical bulletin.}
[8] Amara Chandoul : {"On Polynomials solutions of quadratic Diophantine Equations.", Advances in Pure Mathematics..}
[9] F. M. Dekking, recurrent sets, Adv. in Math. 44 (1982), no. 1, 78-104. MR 84 : 52023.
[10] P. Fogg, "Substitutions in dynamics, arithmetics and combinatorics" (Lecture Botes in Mathematics, Vol. 1794).
[11] J. M. Luck, C. Godrѐche and A. Janner and T. Janssen, "The nature of the atomic surfaces of quasiperiodic self similar structures", J. Phys. A : Math. Gen. 26 : 1951-1999 (1993).
[12] A. Messaoudi: "Propriétés arithmétiques et dynamiques du fractal de Rauzy", journal de Théorie des nombres de bordeaux, 10, 1998, 135-162.
[13] G. Rauzy: "Nombre algébrique et substitution", Bull.Soc.Math. France 110 (1982), 147-178.
[14] M. Queffelec, "Substitution dynamical system", Spectra analysis, lecture note in mathematics, 1294, Springer-Verlag, Berlin, 1987.
[15] Anne Siegel: "Autour des fractals de Rauzy", Journées Femmes et Mathématiques, Paris (03/2002).
[16] Anne Siegel and Jorg M.Thuswaldner: "Topological proprieties of Rauzy fractal", Mémoires de la SMF.
[17] Victor F.Sirvent: "The common dynamics of the tribonacci substitutions", Bull. Belg.Math..Soc. 7 (2000), 571-582.
[18] B. Sing and V. Sirvent: "Geometry of the common dynamics of flipped Pisot substitution", Monatshefte für Mathematik, 155 (2008), 431-448.
[19] Victor Sirvent and yang Sirvent, "Self affine tiling via substitution dynamical systems and Rauzy fractal". Pacific journal of mathematics Vol 206, N 2, 2002.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation