Full Paper View Go Back

Approximation of the Cubic Functional Equation in Non-Archimedean Normed Spaces : Direct and Fixed Point Method

Shalini Tomar1 , Nawneet Hooda2

  1. Dept. of Mathematics, Kanya Mahavidyalaya, MD University, Kharkhoda, India.
  2. Dept. of Mathematics, DCRUST, Murthal, Sonepat, India.

Section:Research Paper, Product Type: Isroset-Journal
Vol.5 , Issue.3 , pp.140-145, Jun-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v5i3.140145


Online published on Jun 30, 2018


Copyright © Shalini Tomar, Nawneet Hooda . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Shalini Tomar, Nawneet Hooda, “Approximation of the Cubic Functional Equation in Non-Archimedean Normed Spaces : Direct and Fixed Point Method,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.3, pp.140-145, 2018.

MLA Style Citation: Shalini Tomar, Nawneet Hooda "Approximation of the Cubic Functional Equation in Non-Archimedean Normed Spaces : Direct and Fixed Point Method." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.3 (2018): 140-145.

APA Style Citation: Shalini Tomar, Nawneet Hooda, (2018). Approximation of the Cubic Functional Equation in Non-Archimedean Normed Spaces : Direct and Fixed Point Method. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(3), 140-145.

BibTex Style Citation:
@article{Tomar_2018,
author = {Shalini Tomar, Nawneet Hooda},
title = {Approximation of the Cubic Functional Equation in Non-Archimedean Normed Spaces : Direct and Fixed Point Method},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {6 2018},
volume = {5},
Issue = {3},
month = {6},
year = {2018},
issn = {2347-2693},
pages = {140-145},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=687},
doi = {https://doi.org/10.26438/ijcse/v5i3.140145}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i3.140145}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=687
TI - Approximation of the Cubic Functional Equation in Non-Archimedean Normed Spaces : Direct and Fixed Point Method
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - Shalini Tomar, Nawneet Hooda
PY - 2018
DA - 2018/06/30
PB - IJCSE, Indore, INDIA
SP - 140-145
IS - 3
VL - 5
SN - 2347-2693
ER -

407 Views    198 Downloads    102 Downloads
  
  

Abstract :
In this paper, we will consider the following form of cubic functional equation: f(kx+y) - f(x+ky) = (k-1)(k+1)2[f(x) – f(y)] – k(k-1)f(x-y) for a positive integer k greater than 2. We will investigate the Hyers-Ulam-Rassias stability of cubic functional equation using two different approaches i.e. direct and fixed point method in non-Archimedean normed spaces.

Key-Words / Index Term :
Hyers-Ulam-Rassias stability, Cubic functional equation and non-archimedean normed spaces

References :
[1]. S. M. Ulam,"Problems in Modern Mathematics", Science Editions, JohnWiley and Sons, New York, NY, USA,1964.
[2]. H. Azadi Kenary,"Non-Archimedean stability of Cauchy-Jensen type functional equation ", Int. J. nonlinear analysis appl., vol. 1, issue. 2, pp. 1-10, 2010.
[3]. J.B. Diaz ,B. Margolis,"A fixed point theorem of the alternative for contraction on a generalized complete metric space",Bull. Amer. Math. Soc.,vol. 74,pp. 305-309, 1968.
[4]. M. Eshaghi Gordji and H. Khodaei,"Stability of Functional Equations", Lap Lambert Academic Publishing, 2010.
[5]. M. Eshaghi Gordji, S. Zolfaghari, J. M. Rassias, and M. B. Savadkouhi,"Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces",Abstract and Applied Analysis, vol. 2009, Article ID 417473, 14 pages.
[6]. P. Gavruta, "A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings",J. Math. Anal. Appl., vol. 184, issue. 3, pp. 431-436, 1994.
[7]. K. Hensel, "Ubereine news Begrundung der Theorie der algebraischen Zahlen", Jahresber. Deutsch. Math., vol. 6 , pp. 83 - 88, 1897.
[8]. N. Hooda and S. Tomar,"Approximation of the cubic functional equation in random normed spaces:direct and fixed point method",Aryabhatta Journal of Mathematics and Informatics,vol. 10,issue. 1,pp. 99-114, 2018.
[9]. D. H. Hyers,"On the stability of the linear functional equation", Proc. Natl. Acad. Sci. USA, vol. 27, issue. 4, pp. 222-224 , 1941.
[10]. K.W.Jun and H.M.Kim,"The generalized Hyers-Ulam-Rassias stability problem of cubic functional equation",J. Math. Anal. Appl.,vol. 27 ,pp. 867-878, 2002.
[11]. W.A.J. Luxemburg,"On the convergence of successive approximation in the theory of ordinary differential equation",Proc. K. Ned. Aked. Wet.,Ser. A.,Indag. Math.,vol. 20,pp. 540-546, 1958.
[12]. D. Mihet, "The stability of the additive Cauchy functional equation in non-Archimedean fuzzy normed spaces", Fuzzy Sets and Systems ,vol. 161, pp. 2206-2212, 2010.
[13]. D. Mihet¸ and V. Radu,"On the stability of the additive Cauchy functional equation in random normed spaces",J. Math Anal Appl, vol. 343, issue. 1, pp. 567 - 572, 2008.
[14]. A. Najati, " The generalized Hyers-Ulam-Rassias stability of a cubic functional equation", Turk. J. Math., vol. 31, issue. 4, pp. 395-408, 2007.
[15]. J. M. Rassias,"On approximation of approximately linear mappings by linear mappings", J. Funct. Anal., vol. 46, issue. 1, pp. 126-130, 1982.
[16]. Th. M. Rassias,"On the stability of the linear mapping in Banach spaces", Proc. Amer. Math. Soc.,vol. 72 ,pp. 297 - 300, 1978.
[17]. M. A. Sibaha,B. Bouikhalene, and E. Elqorachi, "Ulam-Gavruta-Rassias stability of a linear functional equation", Int. J. Appl. Math. Stat., vol. 7, issue. Fe07, pp. 157-166, 2007.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation