Full Paper View Go Back

A Unified Theory of Irresolute Multifunction

D. Sheeba1 , N. Nagaveni2

Section:Research Paper, Product Type: Isroset-Journal
Vol.5 , Issue.4 , pp.61-65, Aug-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v5i4.6165


Online published on Aug 31, 2018


Copyright © D. Sheeba , N. Nagaveni . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: D. Sheeba , N. Nagaveni, “A Unified Theory of Irresolute Multifunction,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.4, pp.61-65, 2018.

MLA Style Citation: D. Sheeba , N. Nagaveni "A Unified Theory of Irresolute Multifunction." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.4 (2018): 61-65.

APA Style Citation: D. Sheeba , N. Nagaveni, (2018). A Unified Theory of Irresolute Multifunction. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(4), 61-65.

BibTex Style Citation:
@article{Sheeba_2018,
author = {D. Sheeba , N. Nagaveni},
title = {A Unified Theory of Irresolute Multifunction},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {8 2018},
volume = {5},
Issue = {4},
month = {8},
year = {2018},
issn = {2347-2693},
pages = {61-65},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=711},
doi = {https://doi.org/10.26438/ijcse/v5i4.6165}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i4.6165}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=711
TI - A Unified Theory of Irresolute Multifunction
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - D. Sheeba , N. Nagaveni
PY - 2018
DA - 2018/08/31
PB - IJCSE, Indore, INDIA
SP - 61-65
IS - 4
VL - 5
SN - 2347-2693
ER -

545 Views    353 Downloads    115 Downloads
  
  

Abstract :
In this paper, A unified theory of irresolute multifunction such as an upper and lower m_wg-irresolute multifunction are studied and which is a generalisation of both irresolute multifunction and m-irresolute multifunction. Also, we unified some of its characterizations in Minimal Structures.

Key-Words / Index Term :
Upper / Lower m_wg-irresolute multifunction, m_wg- normal space, m_wg-compact space, graph function and Minimal structures.

References :
[1]. J. Cao and I. L. Reilly, “⍺-Continuous and ⍺-Irresolute Multifunctions”, Mathematica Bohemica, Vol-121, No. 4, 415 - 424, 1996.
[2]. M. Mocanu, “On m-Compact spaces”, Rendiconti Del Circolo Matematico Di Palermo, Series II, Tomo LIII 1-26, 2005.
[3]. M. E. Abd El-Monsef and A. A. Nasef, “On Multifunctions”, Chaos, Solitons & Fractals, 12, 2387 - 2394, 2001.
[4]. N. Nagaveni and P. Sundaram “On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces”, Far East J. of Math. Sci. Vol-6, No. 6, 903 - 912, 1998.
[5]. T. Noiri and V. Popa, “Almost weakly continuous multifunctions”, Demonstratio Math., Vol-26, 393 - 380, 1993.
[6]. T. Noiri and V. Popa, “On Upper and Lower M -Continuous Multifunctions”, Filomat, Vol-14, 73 - 86, 2000.
[7]. T.Noiri and V. Popa, “On m-quasi Irresolute Multifunctions”, Mathematica Moravica, Vol-9, 25 - 41, 2005.
[8]. R. Parimelazhagan, K. Balachandran and N. Nagaveni, “Weakly generalized closed sets in Minimal Structures”, Int. J. Contemp. Math. Sciences, Vol-4, No.27, 1335 -1343, 2009.
[9]. V. Popa, “Irresolute Multifunction”, Int. J. Math. & Math. Sci., Vol-13, No.2, 275 - 280, 1990.
[10]. D. Sheeba and N. Nagaveni, “On Minimal Topological Totally Closed Graphs”, Annals of pure and applied mathematics, Vol-16, No.2, 401 - 411, 2018.
[11]. D. Sheeba and N. Nagaveni, “Multifunction with Topological Closed Graphs”, Journal of Computer and Mathematical Sciences, Vol-9, No.5, 373 - 383, May 2018.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation