Full Paper View Go Back

Anti-magic labeling for Boolean graph of path BG(P_n), (n≥4)

T. Subhramaniyan1 , S. Suruthi2

Section:Research Paper, Product Type: Isroset-Journal
Vol.5 , Issue.4 , pp.306-310, Aug-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v5i4.306310


Online published on Aug 31, 2018


Copyright © T. Subhramaniyan , S. Suruthi . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: T. Subhramaniyan , S. Suruthi, “Anti-magic labeling for Boolean graph of path BG(P_n), (n≥4),” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.4, pp.306-310, 2018.

MLA Style Citation: T. Subhramaniyan , S. Suruthi "Anti-magic labeling for Boolean graph of path BG(P_n), (n≥4)." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.4 (2018): 306-310.

APA Style Citation: T. Subhramaniyan , S. Suruthi, (2018). Anti-magic labeling for Boolean graph of path BG(P_n), (n≥4). International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(4), 306-310.

BibTex Style Citation:
@article{Subhramaniyan_2018,
author = {T. Subhramaniyan , S. Suruthi},
title = {Anti-magic labeling for Boolean graph of path BG(P_n), (n≥4)},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {8 2018},
volume = {5},
Issue = {4},
month = {8},
year = {2018},
issn = {2347-2693},
pages = {306-310},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=742},
doi = {https://doi.org/10.26438/ijcse/v5i4.306310}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i4.306310}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=742
TI - Anti-magic labeling for Boolean graph of path BG(P_n), (n≥4)
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - T. Subhramaniyan , S. Suruthi
PY - 2018
DA - 2018/08/31
PB - IJCSE, Indore, INDIA
SP - 306-310
IS - 4
VL - 5
SN - 2347-2693
ER -

378 Views    307 Downloads    82 Downloads
  
  

Abstract :
A graph G is anti-magic if there is a labelling of G is a one-to-one mapping taking the edges onto 1, 2, ...., |E| such that the sum of the labels assigned to edges incident to distinct vertices are different. A conjecture of Hartsfield and Ringel states that every connected graph different from K_2 is anti-magic. Our main result validates this conjecture for Boolean graph of path P_(n) (n≥4).

Key-Words / Index Term :
Boolean graph BG(G) Anti-magic Labeling

References :
[1] N. Alon, G. Kaplan, A. Lev, Y. Roditty, R. Yuster, Dense graphs are antimagic, Journal of Graph Theory 47 (2004) 297–309.
[2] W. Brown, Antimagiclabelings and the antimagic strength of graphs, manuscript, 2008.
[3] D.W. Cranston, Regular bipartite graphs are antimagic, Journal of Graph Theory 60 (3) (2009) 173–182.
[4] N. Hartsfield, G. Ringel, Perals in Graph THeory, Academic Press, INC, Boston, 1990, pp. 108–109. Revised version 1994.
[5] G. Kaplan, A. Lev, Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Mathematics 309 (2009) 2010–2014.
[6] Y. Liang, X. Zhu, Antimagic labeling of regular graphs, manuscript, 2012.
[7] Y. Zhang, X. Sun, The antimagicness of the Cartesian product of graphs, Theoretical Computer Science 410 (2009) 727–735.
[8] Subramanian Arumugam, Mirka Miller, OudonePhanalasy and Joe Ryan, Antimagic labeling of generalized pyramid graphs, ActaMathematicaSinica, English Series, 30, 2, (283).

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation