Full Paper View Go Back

Fixed Point Theorem in Partial Metric Spaces

R. Krishnakumar1 , R. Livingston2

Section:Research Paper, Product Type: Isroset-Journal
Vol.5 , Issue.4 , pp.384-388, Aug-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v5i4.384388


Online published on Aug 31, 2018


Copyright © R. Krishnakumar, R. Livingston . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: R. Krishnakumar, R. Livingston, “Fixed Point Theorem in Partial Metric Spaces,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.4, pp.384-388, 2018.

MLA Style Citation: R. Krishnakumar, R. Livingston "Fixed Point Theorem in Partial Metric Spaces." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.4 (2018): 384-388.

APA Style Citation: R. Krishnakumar, R. Livingston, (2018). Fixed Point Theorem in Partial Metric Spaces. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(4), 384-388.

BibTex Style Citation:
@article{Krishnakumar_2018,
author = { R. Krishnakumar, R. Livingston},
title = {Fixed Point Theorem in Partial Metric Spaces},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {8 2018},
volume = {5},
Issue = {4},
month = {8},
year = {2018},
issn = {2347-2693},
pages = {384-388},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=753},
doi = {https://doi.org/10.26438/ijcse/v5i4.384388}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i4.384388}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=753
TI - Fixed Point Theorem in Partial Metric Spaces
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - R. Krishnakumar, R. Livingston
PY - 2018
DA - 2018/08/31
PB - IJCSE, Indore, INDIA
SP - 384-388
IS - 4
VL - 5
SN - 2347-2693
ER -

944 Views    309 Downloads    105 Downloads
  
  

Abstract :
In this paper, we proved the common fixed point theorems for sequence of mappings in Partial Metric Spaces.

Key-Words / Index Term :
Partial Metric Space, Complete Patial Metric Space, Coincidence Point, Weakly Compatible, Fixed Point.

References :
[1] M. Aamri and D.El Moutawakil, common fixed points under contractive conditions in symmetric spaces, Appl. Math. E-Notes
3(2003), 156 – 162.
[2] M. Aamri and D.El Moutawakil, some new common fixed point theorems under strict contractiveconditions, J. Math. Anal.
Appl. 270 (2002), 181 – 188.
[3] R. P. Pant, Common fixed points of sequences of mappings, Ganita, 47 (1996) 43 – 49.
[4] Ljubomir Ciric, Bessem Samet, HassenAydi, Galogero Vetro, common fixed points of generalized contractions on partial
metric spaces and an application, Applied Mathematics and Computation 218 (2011) 2398 – 2406.
[5] Duran Turkoglu and Ishak Altun A Common fixed point theorem for weakly compatible mappings insymmetric spaces
satisfying an implicit realtion Bol. Soc. Mat. Mexicana (3) Vol.13. 2007.
[6] R. P. Pant, Common fixed points of contractive maps, J. Math. Anal. Appl., 226 (1998) 251 – 258.
[7] S. Sessa, On a weak commutatively condition of mappings in fixed point considerations, Publ. Int., Math.(Belgrad), 32 (1982),
149 – 153.
[8] G. Jungck, Compatible mappings and common fixed points, Intl. J. Math. Sci., 9(1986) 771 – 779.
[9] J. Jachymski, Common fixed point theorems for some families of maps, Ind.J. Pure Appl. Math., 25 (1994)925 – 937.
[10] G.Jungck, K. B. Moon, S. Park and B. E. Rhodes, on generalization of the meir –keeler type contraction maps coeerctions, J.
Math. Anal. Appl., 180 (1993) 221 – 222.
[11] I. Altun, H. A. Hancer and D. Tuekoglu, A fixed point theorem for multi – maps satisfying an implicitrelation on metrically
convex metric spaces, Math. Commun. 11 (2006), 17 – 23.
[12] R. Krishnakumar, K. Dinesh, D. Dhamodharan, Some fixed point theorems φ- ψ weak contraction on Fuzzy Metric
spaces, International Journal of Scientific Research in Mathematical and Statistical Sciences, Volume-5, Issue-3, pp.146-
152, June (2018)
[13] T. L. Hicks and B. E. Rhoades, Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear
Anal., 36 (1999) 331 – 344.
[14] R. Krishnakumar and T. Mani, Common fixed point of contractive modulus on complete metric space,International Journal of
Mathematics And its Applications, 5(4 – D) (2017), 513 – 520.
[15] G. Jungck, Common fixed points for non continuous non self maps on non metric spaces, for East J. Math.Sci. (4) (2), (1996),
199 – 215.
[16] S. G. Matthews, Partial metric topology, in: Proceedings Eighth Summer Conference on General Topology and Application, in:
Ann. New York Acad. Sci. 728 (1994) 184 – 197.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation